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Efficient octree traversal 
for real-time path tracing systems
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Octrees are one of my favorite spatial data structures because of their simplicity 
and efficiency — they’re easy to understand and visualize, and can significantly 
improve the performance of a task.

The Final Stage path tracer uses octrees to reduce rendering time by about 
100x, so I thought it might be interesting to explore how this was achieved.  
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THE PROBLEM

Photorealistic rendering algorithms often 
require us to determine where a photon 
ray first collides with objects in our scene 
(aka ray-scene collision detection).

Modern renderers perform this kind of 
collision detection hundreds of billions of 
times to generate a single frame, so 
performance is incredibly important.
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THE PROBLEM

PHOTON RAY

SCENE

Specifically, given a collection of objects that comprise our scene, and a 
photon travelling in a straight line (i.e. a photon ray), determine the first 
object, if any, that is struck by the photon.

Result: the first object 
struck by the photon ray is 
a small red sphere.
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THE PROBLEM

✘  Test our photon ray against every object in the scene

✘  Test our photon ray against every polygon of every object

✘  Rely solely on non-spatial data structures to represent our scene

Things we definitely don’t want to do:

Doing any of these will severely impact performance!

http://www.bertolami.com
http://www.bertolami.com


bertolami.combertolami.com

THE SOLUTION

Our solution needs to scale to support scenes with an arbitrary number of 
objects, and an arbitrary number of polygons. Ideally, memory should be 
the limiting factor, not processing power.

So how do we optimize our ray-scene collision detection?
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THE SOLUTION

Bounding volume hierarchies

We divide the scene into a hierarchy of spatial regions that allow us to 
disregard large groups of objects when we know that the photon will not 
pass through their vicinity (aka bounding volume).

There are many different types of BVHs, including octrees, bsp trees, 
quadtrees, kd trees, and many more. We’re going to focus on octrees.
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THE SOLUTION

Bounding volume hierarchies give us logarithmic computational cost as 
scene complexity increases. Approaches that consider every object will be 
linear at best!
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Scene complexity

testing every object

using a bvh

http://www.bertolami.com
http://www.bertolami.com


bertolami.combertolami.com

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

1 2 3 4 5 6 7 8
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0

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

1 2 3 4 5 6 7 8
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1

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

2 3 4 5 6 7 8
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21

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

3 4 5 6 7 8
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321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

4 5 6 7 8
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4321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

5 6 7 8
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54321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

6 7 8
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654321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

7 8
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7654321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

8
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87654321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned 

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)
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OCTREE STRUCTURE

Each node boundary can be described by a 
center point and a span. 

For convenience we also define three axis 
aligned dividing planes (YZ, XZ, XY).

We’ll use these to quickly determine 
intersections between our ray and the 
nearest child volume.

Node description
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Thus, our goal is to create an Octree class that supports the following operations:

Construction: Octree::Initialize(scene)

Initializes our octree object with scene data. Performed once during setup, 
or whenever the scene changes.

Traversal: Octree::Trace(ray, collision)

Efficiently checks for collisions between the ray and our scene. Stores 
information within collision parameter about the closest collision found, if 
any. Performed many times per frame.

INTERFACE
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OCTREE CONSTRUCTION
void Octree::Initialize(scene) {
  allocate a root_node

  for each polygon in the scene:
    add the polygon to the root_node
    if any of polygon’s vertices are outside of root bounds:
      expand root bounds to cover it

  call root_node.Subdivide(0)
}

void OctreeNode::Subdivide(depth) {
  if depth >= maximum allowable depth or 
      bounding volume is too small or
      total polycount in node bounds < minimum polycount
    return

  for each child node index:
    create the node and set its bounding volume equal to
    the respective sub-volume of the current node.

  for each polygon in the current node:
    add it to any children that it intersects, or optionally
    split polygons along node boundaries and add pieces
    to respective child nodes

  clear all polygons out of the current node
 
  for each child node:
    call Subdivide on the child node
}

Initialization:

Constructs the root node and then kicks off recursive 
subdivision to initialize children.

Subdivision:

Constructs the spatial hierarchy such that:
● Each node has exactly zero or eight children
● Parent bounds is the union of its child node bounds
● Polygons are only referenced by leaf nodes

Halt subdivision when node volume becomes too 
small, node manages a small number of polygons, or 
we reach maximum tree depth.

Optimizations:

● Avoid empty child nodes
● Split polygons along node boundaries
● Multi-threaded construction
● Be careful with memory management of polygons
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TRAVERSAL

Recursively test nodes, beginning with the root. If a collision is 
detected against the current node bounds, recursively test every 
child. Maintain a running knowledge of the closest collision found.

Attempt 1: naïve top/down traversal
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TOP/DOWN TRAVERSAL void Octree::Trace(ray, collision) {
  root_node.Trace(ray, collision)
}

void OctreeNode::Trace(ray, collision) {
  if ray does not intersect node bounds:
    return

  if a collision has already been detected and it’s closer
      than the ray entry point into this node:
    return

  if node is a leaf:
    for each polygon in node:
      if ray intersects polygon:
        if intersection is closer to ray origin than collision:
          update collision with current intersection
  else:
    for each child_node: 

child_node.Trace(ray, collision)    
}

Conditions:
A node is considered a leaf if it contains any polygons. 
Non-leaf nodes will not reference any polygons.

Process:
Start at the root and check it’s children only if the ray 
intersects the root bounds. Recursively repeat this 
process for children, and keep track of the best 
collision (closest to the ray origin) encountered.

Issues:
● We traverse child nodes in a fixed order
● We check every child, even if the nearest collision 

has already been found
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TRAVERSAL

Recursively test nodes, beginning with the root. If collision 
detected against current node bounds, recursively test each child 
using front-to-back order from the ray origin. 

Halt the entire process once a collision is found.

Attempt 2: top/down with distance sorted siblings
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SORTED SIBLING TRAVERSAL void Octree::Trace(ray, collision) {
  root_node.Trace(ray, collision)
}

void OctreeNode::Trace(ray, collision) {
  if ray does not intersect node bounds:
    return

  if a collision has already been detected and it’s closer
      than the ray entry point into this node:
    return

  if node is a leaf:
    for each polygon in node:
      if ray intersects polygon:
        if intersection is closer to ray origin than collision:
          update collision with current intersection
  else:
    for i = 0, i < 4, ++i:
      determine nearest untested node to the ray origin
      call node.Trace(ray, collision)
      if collision detected:
        break
}

Process:

Start at the root and check it’s children only if the ray 
intersects the root bounds. 

When checking non-leaf children, begin with the child 
closest to the ray origin, and then test progressively 
farther child nodes. If a collision is detected within a 
leaf node, halt the entire process.

We check at most 4 children of any given node. If a 
collision is not detected in the nearest 4 nodes, there 
won’t be a collision in the remaining 4 either.

But how do we know the order to process child nodes?
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Two key steps for determining the proper traversal order of child nodes:

❏ Finding the closest child node to a given point (often the ray origin)

❏ Finding the next nearest untested child node 

Cases to consider:

● Does the ray originate from outside of the parent node?
● Is the ray pointing away from all child nodes?
● Does the ray graze a node boundary?

If these are both 
true, the ray will not 
intersect any child

SORTED SIBLING TRAVERSAL
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int OctreeNode::ClosestChild(point) {
  oriented_point = point - node_center

  x_test = oriented_point.x >= 0.0
  y_test = oriented_point.y >= 0.0
  z_test = oriented_point.z >= 0.0

  return x_test | (y_test << 1) | (z_test >= 0.0 << 2)
}

Finding the nearest child relative to a point:

Recall that we defined our nodes as the combination of 
a point, a span, and three planes. If we orient our point 
(which is often the ray origin) relative to the node 
center, then we can quickly determine which child node 
is nearest by comparing the oriented point with the 
basis x, y, and z planes.

In other words, for the oriented point [x’, y’, z’]:

● If x >= 0, then it is closest to a positive x child node
● If y >= 0, then it is closest to a positive y child node
● If z >= 0, then it is closest to a positive z child node

The combination of these boolean results uniquely 
identifies which node must be closest to the point.

SORTED SIBLING TRAVERSAL
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int OctreeNode::ClosestChild(point) {
  oriented_point = point - node_center

  x_test = oriented_point.x >= 0.0
  y_test = oriented_point.y >= 0.0
  z_test = oriented_point.z >= 0.0

  return x_test | (y_test << 1) | (z_test >= 0.0 << 2)
}

Finding the nearest child relative to a point:

Recall that we defined our nodes as the combination of 
a point, a span, and three planes. If we orient our point 
(which is often the ray origin) relative to the node 
center, then we can quickly determine which child node 
is nearest by comparing the oriented point with the 
basis x, y, and z planes.

In other words, for the oriented point [x’, y’, z’]:

● If x >= 0, then it is closest to a positive x child node
● If y >= 0, then it is closest to a positive y child node
● If z >= 0, then it is closest to a positive z child node

The combination of these boolean results uniquely 
identifies which node must be closest to the point.

SORTED SIBLING TRAVERSAL

Packaging the response

For convenience, we combine the results into an index 
that matches the order that we allocated child nodes in 
the tree. The following table describes this mapping:

Binary value Quadrant

000

001

010

011

…
111

-X, -Y, -Z

+X, -Y, -Z

-X, +Y, -Z

+X, +Y, -Z

…
+X, +Y, +Z
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closest_node_index = ClosestChild(ray.origin)

plane_hit[0] = result of ray intersection test against YZ plane
plane_hit[1] = result of ray intersection test against XZ plane
plane_hit[2] = result of ray intersection test against XY plane

for i = 0, i < 4, ++i:
  if child_node at closest_node_index is valid:
    call child_node.Trace(ray, collision)
    if collision detected:
      break;
  
  plane_index = index of closest valid plane_hit collision

  if there are no valid plane collisions or
     closest plane collision point is outside parent bounds:
    break;

  closest_node_index ^= 0x1 << plane_index
  invalidate plane_hit[plane_index]

  
  

Finding the next nearest sibling to check

We check for collisions between the ray and each of 
the parent node’s three axis planes. The nearest plane 
that is struck will indicate the entry point of the ray into 
the next nearest sibling.

If no plane is hit, then the ray is headed out of the node 
and will not hit any other children of the current parent.

.
Example:

A ray exiting the 
(-X,+Y,-Z) quadrant with a 
collision against the YZ 
plane will enter the 
(+X,+Y,-Z) quadrant as the 
next nearest sibling node 
in our traversal.

SORTED SIBLING TRAVERSAL
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closest_node_index = ClosestChild(ray.origin)

plane_hit[0] = result of ray intersection test against YZ plane
plane_hit[1] = result of ray intersection test against XZ plane
plane_hit[2] = result of ray intersection test against XY plane

for i = 0, i < 4, ++i:
  if child_node at closest_node_index is valid:
    call child_node.Trace(ray, collision)
    if collision detected:
      break;
  
  plane_index = index of closest valid plane_hit collision

  if there are no valid plane collisions or
     closest plane collision point is outside parent bounds:
    break;

  closest_node_index ^= 0x1 << plane_index
  invalidate plane_hit[plane_index]

  
  

Finding the next nearest sibling to check

We check for collisions between the ray and each of 
the parent node’s three axis planes. The nearest plane 
that is struck will indicate the entry point of the ray into 
the next nearest sibling.

If no plane is hit, then the ray is headed out of the node 
and will not hit any other children of the current parent.

.
Example:

A ray exiting the 
(-X,+Y,-Z) quadrant with a 
collision against the YZ 
plane will enter the 
(+X,+Y,-Z) quadrant as the 
next nearest sibling node 
in our traversal.

Configuring the next nearest child node

If we get here, it means the child_node did not have a 
collision. We update closest_node_index to indicate the 
next nearest sibling node and disqualify the current child 
from future consideration.

.

SORTED SIBLING TRAVERSAL
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void OctreeNode::Trace(ray, collision) {
  if ray does not intersect node bounds:
    return

  if a collision has already been detected and it’s closer
      than the ray entry point into this node:
    return

  if node is a leaf:
    for each polygon in node:
      if ray intersects polygon:
        if intersection is closer to ray origin than collision:
          update collision with current intersection
  else:
    closest_node_index = ClosestChild(ray.origin)

    plane_hit[0] = ray intersection test against YZ plane
    plane_hit[1] = ray intersection test against XZ plane
    plane_hit[2] = ray intersection test against XY plane

    for i = 0, i < 4, ++i:
      if child_node at closest_node_index is valid:
        call child_node.Trace(ray, collision)
        if collision detected:
          break;
  
      plane_index = index of closest valid plane_hit collision

      if there are no valid plane collisions or
         closest plane collision point is outside parent bounds:
        break;

      closest_node_index ^= 0x1 << plane_index
      invalidate plane_hit[plane_index]
}

Putting it all together:

● Skip nodes that do not intersect the ray
● If the node is a leaf, test its polygons
● If the node is not a leaf recursively test up to 4 child 

nodes that are nearest to the ray origin
● Halt the entire process the moment a collision is 

detected, or the ray exits the parent bounds.

Optimizations:
● Perform ray-plane intersection tests only if a 

collision isn’t found within the nearest child node.

SORTED SIBLING TRAVERSAL
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RESULTS

Final Stage 2.0 uses nearest neighbor octree traversal. This enabled a 10x 
improvement over naïve traversal, and a 100x improvement over an initial 
non-BVH solution.

No BVH Simple traversal Sorted sibling 
traversal

Render time 1,000 ms 100 ms 10 ms
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CONCLUSION

Bounding volume hierarchies can significantly improve the performance of 
spatial search operations. Commonly used in rendering, but also applicable 
elsewhere.

Lots of libraries from Intel, Nvidia, AMD that do the heavy lifting for you.
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CONCLUSION

Thanks for listening (or reading)!

Don’t forget to check out the source for Final Stage 2.0, which 
demonstrates most of the concepts discussed in this talk.
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