
bertolami.combertolami.com

Efficient octree traversal
for real-time path tracing systems

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

Octrees are one of my favorite spatial data structures because of their simplicity
and efficiency — they’re easy to understand and visualize, and can significantly
improve the performance of a task.

The Final Stage path tracer uses octrees to reduce rendering time by about
100x, so I thought it might be interesting to explore how this was achieved.

http://www.bertolami.com
http://www.bertolami.com
http://bertolami.com/index.php?engine=portfolio&content=graphics&detail=final-stage-2-0

bertolami.combertolami.com

THE PROBLEM

Photorealistic rendering algorithms often
require us to determine where a photon
ray first collides with objects in our scene
(aka ray-scene collision detection).

Modern renderers perform this kind of
collision detection hundreds of billions of
times to generate a single frame, so
performance is incredibly important.

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

THE PROBLEM

PHOTON RAY

SCENE

Specifically, given a collection of objects that comprise our scene, and a
photon travelling in a straight line (i.e. a photon ray), determine the first
object, if any, that is struck by the photon.

Result: the first object
struck by the photon ray is
a small red sphere.

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

THE PROBLEM

✘ Test our photon ray against every object in the scene

✘ Test our photon ray against every polygon of every object

✘ Rely solely on non-spatial data structures to represent our scene

Things we definitely don’t want to do:

Doing any of these will severely impact performance!

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

THE SOLUTION

Our solution needs to scale to support scenes with an arbitrary number of
objects, and an arbitrary number of polygons. Ideally, memory should be
the limiting factor, not processing power.

So how do we optimize our ray-scene collision detection?

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

THE SOLUTION

Bounding volume hierarchies

We divide the scene into a hierarchy of spatial regions that allow us to
disregard large groups of objects when we know that the photon will not
pass through their vicinity (aka bounding volume).

There are many different types of BVHs, including octrees, bsp trees,
quadtrees, kd trees, and many more. We’re going to focus on octrees.

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

THE SOLUTION

Bounding volume hierarchies give us logarithmic computational cost as
scene complexity increases. Approaches that consider every object will be
linear at best!

C
om

pu
ta

tio
na

l c
os

t

Scene complexity

testing every object

using a bvh

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

1 2 3 4 5 6 7 8

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

0

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

1 2 3 4 5 6 7 8

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

1

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

2 3 4 5 6 7 8

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

21

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

3 4 5 6 7 8

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

4 5 6 7 8

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

4321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

5 6 7 8

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

54321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

6 7 8

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

654321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

7 8

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

7654321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

8

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

87654321

OCTREE STRUCTURE

Data structure
Each node references up to 8 children

0

Spatial structure
Each node represents an axis aligned

sub-volume of the parent node

Tree depth restricted to some maximum depth
(e.g. d=32)

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

OCTREE STRUCTURE

Each node boundary can be described by a
center point and a span.

For convenience we also define three axis
aligned dividing planes (YZ, XZ, XY).

We’ll use these to quickly determine
intersections between our ray and the
nearest child volume.

Node description

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

Thus, our goal is to create an Octree class that supports the following operations:

Construction: Octree::Initialize(scene)

Initializes our octree object with scene data. Performed once during setup,
or whenever the scene changes.

Traversal: Octree::Trace(ray, collision)

Efficiently checks for collisions between the ray and our scene. Stores
information within collision parameter about the closest collision found, if
any. Performed many times per frame.

INTERFACE

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

OCTREE CONSTRUCTION
void Octree::Initialize(scene) {
 allocate a root_node

 for each polygon in the scene:
 add the polygon to the root_node
 if any of polygon’s vertices are outside of root bounds:
 expand root bounds to cover it

 call root_node.Subdivide(0)
}

void OctreeNode::Subdivide(depth) {
 if depth >= maximum allowable depth or
 bounding volume is too small or
 total polycount in node bounds < minimum polycount
 return

 for each child node index:
 create the node and set its bounding volume equal to
 the respective sub-volume of the current node.

 for each polygon in the current node:
 add it to any children that it intersects, or optionally
 split polygons along node boundaries and add pieces
 to respective child nodes

 clear all polygons out of the current node

 for each child node:
 call Subdivide on the child node
}

Initialization:

Constructs the root node and then kicks off recursive
subdivision to initialize children.

Subdivision:

Constructs the spatial hierarchy such that:
● Each node has exactly zero or eight children
● Parent bounds is the union of its child node bounds
● Polygons are only referenced by leaf nodes

Halt subdivision when node volume becomes too
small, node manages a small number of polygons, or
we reach maximum tree depth.

Optimizations:

● Avoid empty child nodes
● Split polygons along node boundaries
● Multi-threaded construction
● Be careful with memory management of polygons

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

TRAVERSAL

Recursively test nodes, beginning with the root. If a collision is
detected against the current node bounds, recursively test every
child. Maintain a running knowledge of the closest collision found.

Attempt 1: naïve top/down traversal

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

TOP/DOWN TRAVERSAL void Octree::Trace(ray, collision) {
 root_node.Trace(ray, collision)
}

void OctreeNode::Trace(ray, collision) {
 if ray does not intersect node bounds:
 return

 if a collision has already been detected and it’s closer
 than the ray entry point into this node:
 return

 if node is a leaf:
 for each polygon in node:
 if ray intersects polygon:
 if intersection is closer to ray origin than collision:
 update collision with current intersection
 else:
 for each child_node:

child_node.Trace(ray, collision)
}

Conditions:
A node is considered a leaf if it contains any polygons.
Non-leaf nodes will not reference any polygons.

Process:
Start at the root and check it’s children only if the ray
intersects the root bounds. Recursively repeat this
process for children, and keep track of the best
collision (closest to the ray origin) encountered.

Issues:
● We traverse child nodes in a fixed order
● We check every child, even if the nearest collision

has already been found

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

TRAVERSAL

Recursively test nodes, beginning with the root. If collision
detected against current node bounds, recursively test each child
using front-to-back order from the ray origin.

Halt the entire process once a collision is found.

Attempt 2: top/down with distance sorted siblings

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

SORTED SIBLING TRAVERSAL void Octree::Trace(ray, collision) {
 root_node.Trace(ray, collision)
}

void OctreeNode::Trace(ray, collision) {
 if ray does not intersect node bounds:
 return

 if a collision has already been detected and it’s closer
 than the ray entry point into this node:
 return

 if node is a leaf:
 for each polygon in node:
 if ray intersects polygon:
 if intersection is closer to ray origin than collision:
 update collision with current intersection
 else:
 for i = 0, i < 4, ++i:
 determine nearest untested node to the ray origin
 call node.Trace(ray, collision)
 if collision detected:
 break
}

Process:

Start at the root and check it’s children only if the ray
intersects the root bounds.

When checking non-leaf children, begin with the child
closest to the ray origin, and then test progressively
farther child nodes. If a collision is detected within a
leaf node, halt the entire process.

We check at most 4 children of any given node. If a
collision is not detected in the nearest 4 nodes, there
won’t be a collision in the remaining 4 either.

But how do we know the order to process child nodes?

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

Two key steps for determining the proper traversal order of child nodes:

❏ Finding the closest child node to a given point (often the ray origin)

❏ Finding the next nearest untested child node

Cases to consider:

● Does the ray originate from outside of the parent node?
● Is the ray pointing away from all child nodes?
● Does the ray graze a node boundary?

If these are both
true, the ray will not
intersect any child

SORTED SIBLING TRAVERSAL

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

int OctreeNode::ClosestChild(point) {
 oriented_point = point - node_center

 x_test = oriented_point.x >= 0.0
 y_test = oriented_point.y >= 0.0
 z_test = oriented_point.z >= 0.0

 return x_test | (y_test << 1) | (z_test >= 0.0 << 2)
}

Finding the nearest child relative to a point:

Recall that we defined our nodes as the combination of
a point, a span, and three planes. If we orient our point
(which is often the ray origin) relative to the node
center, then we can quickly determine which child node
is nearest by comparing the oriented point with the
basis x, y, and z planes.

In other words, for the oriented point [x’, y’, z’]:

● If x >= 0, then it is closest to a positive x child node
● If y >= 0, then it is closest to a positive y child node
● If z >= 0, then it is closest to a positive z child node

The combination of these boolean results uniquely
identifies which node must be closest to the point.

SORTED SIBLING TRAVERSAL

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

int OctreeNode::ClosestChild(point) {
 oriented_point = point - node_center

 x_test = oriented_point.x >= 0.0
 y_test = oriented_point.y >= 0.0
 z_test = oriented_point.z >= 0.0

 return x_test | (y_test << 1) | (z_test >= 0.0 << 2)
}

Finding the nearest child relative to a point:

Recall that we defined our nodes as the combination of
a point, a span, and three planes. If we orient our point
(which is often the ray origin) relative to the node
center, then we can quickly determine which child node
is nearest by comparing the oriented point with the
basis x, y, and z planes.

In other words, for the oriented point [x’, y’, z’]:

● If x >= 0, then it is closest to a positive x child node
● If y >= 0, then it is closest to a positive y child node
● If z >= 0, then it is closest to a positive z child node

The combination of these boolean results uniquely
identifies which node must be closest to the point.

SORTED SIBLING TRAVERSAL

Packaging the response

For convenience, we combine the results into an index
that matches the order that we allocated child nodes in
the tree. The following table describes this mapping:

Binary value Quadrant

000

001

010

011

…
111

-X, -Y, -Z

+X, -Y, -Z

-X, +Y, -Z

+X, +Y, -Z

…
+X, +Y, +Z

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

closest_node_index = ClosestChild(ray.origin)

plane_hit[0] = result of ray intersection test against YZ plane
plane_hit[1] = result of ray intersection test against XZ plane
plane_hit[2] = result of ray intersection test against XY plane

for i = 0, i < 4, ++i:
 if child_node at closest_node_index is valid:
 call child_node.Trace(ray, collision)
 if collision detected:
 break;

 plane_index = index of closest valid plane_hit collision

 if there are no valid plane collisions or
 closest plane collision point is outside parent bounds:
 break;

 closest_node_index ^= 0x1 << plane_index
 invalidate plane_hit[plane_index]

Finding the next nearest sibling to check

We check for collisions between the ray and each of
the parent node’s three axis planes. The nearest plane
that is struck will indicate the entry point of the ray into
the next nearest sibling.

If no plane is hit, then the ray is headed out of the node
and will not hit any other children of the current parent.

.
Example:

A ray exiting the
(-X,+Y,-Z) quadrant with a
collision against the YZ
plane will enter the
(+X,+Y,-Z) quadrant as the
next nearest sibling node
in our traversal.

SORTED SIBLING TRAVERSAL

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

closest_node_index = ClosestChild(ray.origin)

plane_hit[0] = result of ray intersection test against YZ plane
plane_hit[1] = result of ray intersection test against XZ plane
plane_hit[2] = result of ray intersection test against XY plane

for i = 0, i < 4, ++i:
 if child_node at closest_node_index is valid:
 call child_node.Trace(ray, collision)
 if collision detected:
 break;

 plane_index = index of closest valid plane_hit collision

 if there are no valid plane collisions or
 closest plane collision point is outside parent bounds:
 break;

 closest_node_index ^= 0x1 << plane_index
 invalidate plane_hit[plane_index]

Finding the next nearest sibling to check

We check for collisions between the ray and each of
the parent node’s three axis planes. The nearest plane
that is struck will indicate the entry point of the ray into
the next nearest sibling.

If no plane is hit, then the ray is headed out of the node
and will not hit any other children of the current parent.

.
Example:

A ray exiting the
(-X,+Y,-Z) quadrant with a
collision against the YZ
plane will enter the
(+X,+Y,-Z) quadrant as the
next nearest sibling node
in our traversal.

Configuring the next nearest child node

If we get here, it means the child_node did not have a
collision. We update closest_node_index to indicate the
next nearest sibling node and disqualify the current child
from future consideration.

.

SORTED SIBLING TRAVERSAL

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

void OctreeNode::Trace(ray, collision) {
 if ray does not intersect node bounds:
 return

 if a collision has already been detected and it’s closer
 than the ray entry point into this node:
 return

 if node is a leaf:
 for each polygon in node:
 if ray intersects polygon:
 if intersection is closer to ray origin than collision:
 update collision with current intersection
 else:
 closest_node_index = ClosestChild(ray.origin)

 plane_hit[0] = ray intersection test against YZ plane
 plane_hit[1] = ray intersection test against XZ plane
 plane_hit[2] = ray intersection test against XY plane

 for i = 0, i < 4, ++i:
 if child_node at closest_node_index is valid:
 call child_node.Trace(ray, collision)
 if collision detected:
 break;

 plane_index = index of closest valid plane_hit collision

 if there are no valid plane collisions or
 closest plane collision point is outside parent bounds:
 break;

 closest_node_index ^= 0x1 << plane_index
 invalidate plane_hit[plane_index]
}

Putting it all together:

● Skip nodes that do not intersect the ray
● If the node is a leaf, test its polygons
● If the node is not a leaf recursively test up to 4 child

nodes that are nearest to the ray origin
● Halt the entire process the moment a collision is

detected, or the ray exits the parent bounds.

Optimizations:
● Perform ray-plane intersection tests only if a

collision isn’t found within the nearest child node.

SORTED SIBLING TRAVERSAL

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

RESULTS

Final Stage 2.0 uses nearest neighbor octree traversal. This enabled a 10x
improvement over naïve traversal, and a 100x improvement over an initial
non-BVH solution.

No BVH Simple traversal Sorted sibling
traversal

Render time 1,000 ms 100 ms 10 ms

http://www.bertolami.com
http://www.bertolami.com
http://bertolami.com/index.php?engine=portfolio&content=graphics&detail=final-stage-2-0

bertolami.combertolami.com

CONCLUSION

Bounding volume hierarchies can significantly improve the performance of
spatial search operations. Commonly used in rendering, but also applicable
elsewhere.

Lots of libraries from Intel, Nvidia, AMD that do the heavy lifting for you.

http://www.bertolami.com
http://www.bertolami.com

bertolami.combertolami.com

CONCLUSION

Thanks for listening (or reading)!

Don’t forget to check out the source for Final Stage 2.0, which
demonstrates most of the concepts discussed in this talk.

http://www.bertolami.com
http://www.bertolami.com
http://bertolami.com/index.php?engine=portfolio&content=graphics&detail=final-stage-2-0

