www.bertolami.com

Knapsack Problem

The knapsack (or backpack) problem is a classiamyn programming problem. While there are a lotarfations
of this problem, this post will only focus on thassic 0/1 variation. This challenge was formatifaduced over a
century ago and pops up in many different aredsdintg cryptography, resource management, and caxitpl
theory. It is also a popular challenge in prograngrinterviews at several large companies.

PROBLEM:

Given a backpack that can only hold a maximum wed§kV, and a set afiitems each with their own weight and
value, decide how to most optimally load your baakp In other words, decide the maximum possiblaeva
achievable by packing a subset of items such kieatdtal weight remains W.

DISCUSSION:

We could solve this with a brute force method by@y enumerating alk™ combinations of items, and selecting
the one that best satisfies our criteria.

Alternatively, we could use dynamic programmingeTisight here is that, to compute the total weggid value of
a set ofc (wherek < n) items, we actually reuse information about tieask — 1 items. In this way, we can
iteratively compute a tabMO...w, 0...n] such that each entryjw, i] describes the combined value of the most
optimal selection of items (0i).that is less than or equal to a weightiwBy computing all entries in this table, we
will arrive at a solution in cel{W, n-1].

Let’'s walk through an example.
Example 1:

Given the items below and a backpack that suppomsximum weight o¥V=4, compute our maximum achievable
value

OBJECT¢ >

OBJECT WEIGHT | VALUE Y 0 1 2 3

0 1 2 v 0 0 0 0 0

1 1 3 é 1

L
2 2 1 )
3 3 3
3

OBJECT LIST 4

SOLUTION TABLE

Our object table shows the weight and value of edidurn=4 objects. The solution table represents each of our
items along the top row (0...3), and incrementallyréasing weights along the first column (0...4).

Each entry in our solution table[,i]) will indicate the maximum value that we can &sl@ using objects Oi..
while remaining less than or equal to a total weigtw. For example, entry[2,1] will represent the maximum
value obtained by selecting some combination oéaisjO and 1 such that the total weightig.

Our final solution cell is highlighted in green, ieh represents the maximum value achieved whendenrisg all
objects and a maximum weight\bfE 4.



www.bertolami.com

Process

We begin by setting all entri&f0,i] to zero, because a weight of zero will allow asarry precisely zero objects,
and thus result in a zero value. Next we step tjindbe table in row-major order and compute thkewahg for
each cell:

—o0 forw <0
viw,i]=<40 forw =0,and i <0
max(v[w,i — 1], q¢; + viw —w;,i —1]) otherwise

where:

w = the current row and weight limit
i = the current column and item limit

q; = the value of item i
w; = the weight of item i

Logic

For each cell, ow[w,i] calculation is making a simple decision for us:wie leave objedtor do we take it? Our
max operation calculates both options for us, and birkgeps the one that produces the highest value.

Leave object: Our first parameten[w, i — 1], assumes that wahould not keep item, so the value is simply the
best we can do with items (0...i-1) and a maximungiveofw. Luckily, we've already calculated
this result for celb[w, i — 1], so we simply copy that value.

Take object: If we take object and place it first in our backpadken we have gained a valuewgtbut have spent
w; in weight. The best we can do now with the renmgjrobjects (0...i-1) and weight — w; is
already computed in[w — w;, i — 1].

Note: if an individual object weight exceeds the alldaleaweightw, our computation ofw — w; will
yield a negative value and foregw — w;, i — 1] to equal-co. When this happens, omax operation
will correctly leave the current object.

Filling out our table we arrive at the following:

ol N
o

N w| N R O <
N N N N o ©
gl g g w| of ~
o| g o w
o| g o W

This tells us that the maximum value we can patk @ur backpack is 6. Notice thg#,3] is guaranteed to hold our
solution, but it may not be the only valid solutiasv[4,2] would also be a valid solution in this pauiigr scenario.



