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Knapsack Problem 
The knapsack (or backpack) problem is a classic dynamic programming problem. While there are a lot of variations 
of this problem, this post will only focus on the classic 0/1 variation. This challenge was formally introduced over a 
century ago and pops up in many different areas including cryptography, resource management, and complexity 
theory. It is also a popular challenge in programming interviews at several large companies. 

PROBLEM: 

Given a backpack that can only hold a maximum weight of W, and a set of n items each with their own weight and 
value, decide how to most optimally load your backpack. In other words, decide the maximum possible value 
achievable by packing a subset of items such that the total weight remains ≤ W. 

DISCUSSION: 

We could solve this with a brute force method by simply enumerating all 2� combinations of items, and selecting 
the one that best satisfies our criteria.  

Alternatively, we could use dynamic programming. The insight here is that, to compute the total weight and value of 
a set of � (where k ≤ n) items, we actually reuse information about the set of � − 1  items. In this way, we can 
iteratively compute a table v[0…w, 0…n] such that each entry, v[w, i] describes the combined value of the most 
optimal selection of items (0…i) that is less than or equal to a weight of w. By computing all entries in this table, we 
will arrive at a solution in cell v[W, n-1]. 

Let’s walk through an example. 

Example 1:  

Given the items below and a backpack that supports a maximum weight of W=4, compute our maximum achievable 
value. 

OBJECT WEIGHT VALUE 
0 1 2 

1 1 3 

2 2 1 

3 3 3 
 
OBJECT LIST 

v 0 1 2 3 

0 0 0 0 0 

1     

2     

3     

4     

 
SOLUTION TABLE 

 
Our object table shows the weight and value of each of our n=4 objects. The solution table represents each of our 
items along the top row (0…3), and incrementally increasing weights along the first column (0…4).  

Each entry in our solution table (v[w,i]) will indicate the maximum value that we can achieve using objects 0…i 
while remaining less than or equal to a total weight of w. For example, entry v[2,1] will represent the maximum 
value obtained by selecting some combination of objects 0 and 1 such that the total weight is ≤ 2. 

Our final solution cell is highlighted in green, which represents the maximum value achieved when considering all 
objects and a maximum weight of W=4. 
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Process 

We begin by setting all entries v[0,i] to zero, because a weight of zero will allow us to carry precisely zero objects, 
and thus result in a zero value. Next we step through the table in row-major order and compute the following for 
each cell: 

��	, �� = 	�−∞												���		 < 0																																																													0																���		 ≥ 0, ���	� < 0																																										max���	, � − 1�, 	�� + ��	 − 	� , � − 1�! 				�"ℎ$�	�%$	 
	ℎ$�$: 
	 = "ℎ$	'(��$�"	��		���		$�)ℎ"	*�+�" � = "ℎ$	'(��$�"	'�*(+�	���	�"$+	*�+�" 

�� = "ℎ$	��*($	��	�"$+	�		� = "ℎ$		$�)ℎ"	��	�"$+	� 
 
Logic 

For each cell, our v[w,i] calculation is making a simple decision for us: do we leave object i or do we take it? Our 
max operation calculates both options for us, and simply keeps the one that produces the highest value.  

Leave object i: Our first parameter, ��	, � − 1�, assumes that we should not keep item i, so the value is simply the 
best we can do with items (0…i-1) and a maximum weight of w. Luckily, we’ve already calculated 
this result for cell ��	, � − 1�, so we simply copy that value.  

Take object i: If we take object i and place it first in our backpack, then we have gained a value of �� but have spent  	� in weight. The best we can do now with the remaining objects (0…i-1) and weight 	 − 	� is 
already computed in ��	 − 	� , � − 1�. 
Note: if an individual object weight exceeds the allowable weight w, our computation of  	 − 	� will 
yield a negative value and force ��	 − 	� , � − 1� to equal	−∞. When this happens, our max operation 
will correctly leave the current object. 

Filling out our table we arrive at the following: 
 

v 0 1 2 3 

0 0 0 0 0 

1 2 3 3 3 

2 2 5 5 5 

3 2 5 5 5 

4 2 5 6 6 

 
 
This tells us that the maximum value we can pack into our backpack is 6. Notice that v[4,3] is guaranteed to hold our 
solution, but it may not be the only valid solution as v[4,2] would also be a valid solution in this particular scenario.  


