Simple Geometric Image Denoising
for Real-time Path Tracers

http://www.bertolami.com
http://www.bertolami.com

While developing Final Stage | created a basic image denoiser that was
surprisingly effective given its simplicity.

Now, there’s a lot of research in this area, and several robust solutions are
available that leverage artificial intelligence and GPU acceleration to produce
stunning results.

So why didn’t | use them, and instead decide to reinvent a wheel?

http://www.bertolami.com
http://www.bertolami.com
http://bertolami.com/index.php?engine=portfolio&content=graphics&detail=final-stage-2-0
https://developer.nvidia.com/optix-denoiser

Final Stage is a fun side project. Reinventing the wheel is part of the fun!
This lets you see how far you can get by yourself and learn a bit about
wheel construction.

| wanted a simple approach that | could drop into Final Stage, without
requiring special hardware or closed/third-party software.

http://www.bertolami.com
http://www.bertolami.com

THE PROBLEM

Photorealistic rendering algorithms often rely on
random sampling to render an image of a scene. This
approach presents results quickly, but produces highly
noticeable image noise.

Over time, this noise will become less visible as the
pixel samples converge on their final values, but this
can take a very long time.

Image denoising is a process integrated into the path
tracer that helps us quickly improve our image quality
by filtering and smoothing out grainy artifacts.

Final Stage render using 50 samples per pixel (spp). Due to the low
sample count, this image suffers from significant grainy noise.

http://www.bertolami.com
http://www.bertolami.com

Image denoising is actually a broad collection of very useful processes that are
used not only in path tracers, but also in video compression, computer vision, video
capture pipelines, and much more.

Anywhere that noise may find its way into an image, denoising filters are there to help
clean things up. There are many different kinds of noise, and fortunately there are
equally many ways of correcting it.

http://www.bertolami.com
http://www.bertolami.com

Before we dive into the process, let’s take a quick look at some results to provide context

http://www.bertolami.com
http://www.bertolami.com

no denoise filter geometric denoise filter

bertolami.com

http://www.bertolami.com
http://www.bertolami.com

no denoise filter geometric denoise filter

bertolami.com

http://www.bertolami.com
http://www.bertolami.com

Denoising filter introduces blur and gradient artifacts, but removes graininess.
From a visual perception standpoint, the filter appears to roughly improve image
quality equivalent to that of a 300% increase in sample count.

Image improvement more readily noticeable on smooth diffuse surfaces, less so
on reflective or complex surfaces.

http://www.bertolami.com
http://www.bertolami.com

THE SOLUTION

1 Trace the scene as normal, but keep track of the following information for each pixel:

o Distance to the nearest object (i.e. depth map)

o Normal vector at the nearest object (i.e. normal map)

o Material id of the nearest object (just a random number generated for each material type)
o Mean color value of all the samples collected thus far

o Variance observed thus far

depth map normal map variance map (scaled)

http://www.bertolami.com
http://www.bertolami.com

THE SOLUTION

2 After each frame completes, apply a smoothing filter to the image:

for each pixel p in the image:
color_total = color at pixel p
kernel _size = pixel_variance * 2.0

for each neighboring pixel n within a kernel size radius:
if material id at n != material id at p:

skip pixel n
if depth at n is > depth_threshold away from depth at p:

skip pixel n
if dot(normal at n, normal at p) is > normal_threshold:

skip pixel n

weight = (1.0 - distance of n to p) / kernel size
weight_total += weight
color_total += (color at n) * weight

if color_total > @:
color_total /= weight total

http://www.bertolami.com
http://www.bertolami.com

THE SOLUTION

2 After each frame completes, apply a smoothing filter to the image:

for each pixel p in the image:

color—F+otral = color A+ nivel n
COx0O7t cOta=x COTOT —at—pPpIXCxT—pP

Arbitrarily multiplying kerneI_size = pixel_variance * 2.0

pixel variance to get

kernel size. for each neighboring pixel n within a kernel size radius:
if material id at n != material id at p:

Determined by trial skip pixel n

and error, 2.0 seems if depth at n is > depth_threshold away from depth at p:

to work well. skip pixel n
if dot(normal at n, normal at p) is > normal_threshold:

skip pixel n

weight = (1.0 - distance of n to p) / kernel size
weight_total += weight
color_total += (color at n) * weight

if color_total > @:
color_total /= weight total

http://www.bertolami.com
http://www.bertolami.com

THE SOLUTION

2 After each frame completes, apply a smoothing filter to the image:

for each pixel p in the image:

ala +a+] color + al

\.U.I.UI_L.UI..GJ. = CU1LUl a’T IJJ.I\CJ. | 4
Our kernel size scales kernel size = pixel variance * 2.0
with our uncertainty
about the true pixel for each neighboring pixel n within a kernel_size radius:
value. if material id at n != material id at p:
skip pixel n
Less certainty » if depth at n is > depth_threshold away from depth at p:
accumulate more skip pixel n
pixels. if dot(normal at n, normal at p) is > normal_threshold:
skip pixel n

weight = (1.0 - distance of n to p) / kernel size
weight_total += weight
color_total += (color at n) * weight

if color_total > @:
color_total /= weight total

http://www.bertolami.com
http://www.bertolami.com

THE SOLUTION

2 After each frame completes, apply a smoothing filter to the image:

for each pixel p in the image:
color_total = color at pixel p
kernel _size = pixel_variance * 2.0

for each neighboring pixel n within a kernel size radius:

, if material id at n != material id at p:
Only include nearby skip pixel n
pixels that are Ilkgly if depth at n is > depth_threshold away from depth at p:
from the same object skip pixel n
qnd lit under similar if dot(normal at n, normal at p) is > normal_threshold:
circumstances skip pixel n

weight = (1.0 - distance of n to p) / kernel size
weight_total += weight
color_total += (color at n) * weight

if color_total > @:
color_total /= weight total

http://www.bertolami.com
http://www.bertolami.com

THE SOLUTION

2 After each frame completes, apply a smoothing filter to the image:

for each pixel p in the image:
color_total = color at pixel p
kernel _size = pixel_variance * 2.0

for each neighboring pixel n within a kernel size radius:
if material id at n != material id at p:

skip pixel n
if depth at n is > depth_threshold away from depth at p:

skip pixel n
if dot(normal at n, normal at p) is > normal_threshold:

skip pixel n

Weighted average of weight = (1.0 - distance of n to p) / kernel size

neighbors by distance weight_total += weight
to the current pixel (p) color_total += (color at n) * weight

if color_total > @:
color_total /= weight total

http://www.bertolami.com
http://www.bertolami.com

An important detail — when computing our variance it’'s important that we use an
incremental approach that’s quick and has a constant cost.

We may need to filter a high resolution image with millions of samples per pixel,
and computing variance can quickly become a prohibitively expensive
operation.

My solution: compute an incremental mean and an incremental approximation
to variance. This requires only a minimal amount of work per frame, and avoids
having to re-analyze the full sample set.

http://www.bertolami.com
http://www.bertolami.com

GENERIC APPROACH

vector3 ComputeMean(list_of_samples, sample_count):
for each sample s in list of samples:
Mean mean += (1 / sample_count) * s
return mean

vector3 ComputeVariance(list_of samples, sample_count, mean):
for each sample s in list of samples:
Variance mean_delta = (s - mean).length()
variance += (1 / sample_count) * (mean_delta * mean_delta)
return variance

http://www.bertolami.com
http://www.bertolami.com

GENERIC APPROACH

vector3 ComputeMean(list_of_samples, sample_count):
for each sample s in list of samples:
Mean mean += (1 / sample_count) * s
return mean

vector3 ComputeVariance(list_of samples, sample_count, mean):
for each sample s in list of samples:
Variance mean_delta = (s - mean).length()
variance += (1 / sample_count) * (mean_delta * mean_delta)
return variance

This approach requires us to re-examine all of our samples each frame, which is a non-starter.

http://www.bertolami.com
http://www.bertolami.com

INCREMENTAL APPROACH

Incremental
Mean

Incremental
Variance
(approximation!)

vector3 ComputeIncrementalMean(previous_mean, sample_count, incoming_sample):
return (current_mean * sample_count + incoming_sample) / (sample_count + 1)

vector3 ComputeIncrementalVariance(
previous_variance, sample count, incoming sample, incremental mean):
mean_delta = (incoming_sample - incremental_mean).length()
return (sample count * previous_variance +
(mean_delta * mean_delta) / (sample count + 1)

By retaining the previous frame’s mean and approximated variance, and incorporating
new samples directly, we avoid having to re-evaluate the entire sample set.

http://www.bertolami.com
http://www.bertolami.com

INCREMENTAL APPROACH

Incremental
Mean

Incremental
Variance
(approximation!)

vector3 ComputeIncrementalMean(previous_mean, sample_count, incoming_sample):
return (current_mean * sample_count + incoming_sample) / (sample_count + 1)

vector3 ComputeIncrementalVariance(
previous_variance, sample count, incoming sample, incremental mean):
mean_delta = (incoming_sample - incremental_mean).length()
return (sample count * previous_variance +

(mean_delta * mean_delta) / (sample count + 1)
Incremental variance != variance

Output is only loosely correlated!

By retaining the previous frame’s mean and approximated variance, and incorporating
new samples directly, we avoid having to re-evaluate the entire sample set.

http://www.bertolami.com
http://www.bertolami.com

CONCLUSION

Simple technique that yields reasonable results, but approach is highly dependent
upon hand tuned thresholds (depth_threshold, normal_threshold, kernel size
multiplier). In theory this could be automated, but for lower level of effort | would
instead opt to integrate a commercial solution.

Properly tuned thresholds appear to roughly improve image quality equivalent to
that of a 300% increase in sample count. Poorly tuned thresholds will result in
excessive blurring artifacts, which may be worse than the noise we are attempting to
correct!

Overall a quick and fun project with lots of room for experimentation.

http://www.bertolami.com
http://www.bertolami.com

CONCLUSION

Thanks for listening (or reading)!

Don’t forget to check out the source for Final Stage 2.0, which
demonstrates the concepts discussed in this talk.

http://www.bertolami.com
http://www.bertolami.com
http://bertolami.com/index.php?engine=portfolio&content=graphics&detail=final-stage-2-0

