
Dynamic Coverage Anti-aliasing

Bertolami 2010

Real-time graphics research

While conducting graphics research in early 2006 we tested a new method for

anti-aliasing that provided a visual quality improvement comparable to 4x MSAA,

but with about half the storage cost. In this presentation we’ll walk through the

basics of the approach, and discuss our handling of several challenging edge cases.

The Problem

Duke Nukem Forever
1152x640 (No AA)

The Problem

Duke Nukem Forever
1152x640 (No AA)

THE PROBLEM

Jagged lines along object boundaries in raster based graphics systems (aka spatial
discontinuities in high frequency visual data)

A
The Problem

Lots of ways to solve this. The simplest approach is simply increasing resolution
(if possible). More advanced methods seek to smooth jagged edges where needed,
while minimizing overall processing and storage costs.

VS

Super-sample anti-aliasing:

Multi-sample anti-aliasing:

Render the scene at a higher resolution and then downsample using an intelligent filter.
Significantly improves visual quality but carries a high cost (typically 4x-16x the video memory, and
4x-16x additional shader processing)

Render the scene at a normal resolution, but maintain multiple sub-pixel samples that can be
blended together to produce a smoother final result. Significantly improves visual quality but also
carries a high cost (typically 2x-16x the video memory)

THE PROBLEMPopular Methods

Let’s walk through a simple example of anti-aliasing.

Two overlapping triangles intersecting our pixel.
Purple triangle is in front, green triangle is behind.

Let’s assume that one color fragment is 16
bytes, and one depth fragment is 2 bytes.

THE PROBLEMWalkthrough

our example pixel

If we precisely compute
the contribution of each
color by area of coverage

our example pixel rgb(221, 223, 228)

Theoretically correct result

THE PROBLEMWalkthrough

Without anti-aliasing, the final pixel value is
determined by the nearest object that overlaps the
pixel center. This will result in jaggies at
sub-retina DPIs, but the storage and processing
costs are minimal.

Storage cost: 18 bytes (1 color, 1 depth)

Shader cost: 1x pixel shader pass

THE PROBLEMNo Anti-aliasing

4x supersampling effectively increases the
resolution of the image by 4x. The final pixel value
is determined by filtering 4 neighboring pixels down
to a single value. The results are significant, but the
storage and processing costs are great.

Storage cost: 72 bytes (4 color, 4 depth)

Shader cost: 4x pixel shader pass

THE PROBLEMSupersampling

With 4x multisample anti-aliasing, we record color and
depth values at four carefully selected sample locations
within the pixel. Depth is required for sample-level depth
testing against incoming fragments.

Our shader is run only once, and then samples are
updated based on coverage.

4x Multisample Anti-aliasing

Storage cost: 72 bytes (4 color, 4 depth)

Shader cost: 1x pixel shader pass

Update phase:
for each triangle that overlaps our pixel:

 for each sub-sample within the pixel:

 if sub-sample is covered by the triangle:

 if triangle depth is < sub-sample depth:

 update sub-sample color to triangle color

 update sub-sample depth to triangle depth

Resolve phase:
final pixel color = 0

for each sub-sample within the pixel:

 final pixel color += (sub-sample color) / sub-sample count

4x Multisample Anti-aliasing

With dynamic coverage anti-aliasing, we maintain two
color and two depth values that indicate the two
fragments that most contribute to the final pixel value.

We also record two 16 bit coverage masks that indicate
the percent of coverage for each sample.

Similar to multisample antialiasing, our shader is run only
once, and then samples are updated based on coverage.

Dynamic Coverage Anti-aliasing

Storage cost: 40 bytes (2 color, 2 depth, 2 masks)

Shader cost: 1x pixel shader pass

Note that in practice sample locations
are carefully (not evenly) distributed

Dynamic Coverage Anti-aliasing

Update phase:
for each triangle that overlaps our pixel:

 IM = 0

 for each coverage sample within the pixel:

 if coverage sample is covered by the triangle:

 set IM[coverage sample index] = 1

 if ID is < SD0 or ID is < SD1:

 if SD0 < SD1:

 SC1 = IC, SD1 = ID, SM1 = IM

 else:

 SC0 = IC, SD0 = ID, M0 = IM

For each pixel we maintain the following storage. At the start of the frame all

masks are initialized to 0xFFFF, colors to clear color, depth to DEPTH_MAX.

SC0 = sample 0 color, SC1 = sample 1 color

SD0 = sample 0 depth, SD1 = sample 1 depth

SM0 = sample 0 mask, SM1 = sample 1 mask

When writing shaded fragments to our buffers we also define:

IC = incoming color, ID = incoming depth, IM = incoming mask

At the end of our frame we resolve our samples with:

TCC = number of unique bits set across SM0 and SM1

SMC0 = count of bits set in SM0

SMC1 = count of bits set in SM1

Resolve phase:
if SD0 < SD1:

 output color =

 (SC0 * SMC0 + SC1 * (SM1 & ~SM0)) / TCC

else:

 output color =

 (SC1 * SMC1 + SC0 * (SM0 & ~SM1)) / TCC

Dynamic Coverage Anti-aliasing

Update phase:
for each triangle that overlaps our pixel:

 IM = 0

 for each coverage sample within the pixel:

 if coverage sample is covered by the triangle:

 set IM[coverage sample index] = 1

 if ID is < SD0 or ID is < SD1:

 if SD0 < SD1:

 SC1 = IC, SD1 = ID, SM1 = IM

 else:

 SC0 = IC, SD0 = ID, M0 = IM

For each pixel we maintain the following storage. At the start of the frame all

masks are initialized to 0xFFFF, colors to clear color, depth to DEPTH_MAX.

SC0 = sample 0 color, SC1 = sample 1 color

SD0 = sample 0 depth, SD1 = sample 1 depth

SM0 = sample 0 mask, SM1 = sample 1 mask

When writing shaded fragments to our buffers we also define:

IC = incoming color, ID = incoming depth, IM = incoming mask

At the end of our frame we resolve our samples with:

TCC = number of unique bits set across SM0 and SM1

SMC0 = count of bits set in SM0

SMC1 = count of bits set in SM1

Resolve phase:
if SD0 < SD1:

 output color =

 (SC0 * SMC0 + SC1 * (SM1 & ~SM0)) / TCC

else:

 output color =

 (SC1 * SMC1 + SC0 * (SM0 & ~SM1)) / TCC

If our incoming depth is closer than at least
one of our cached samples, then we evict
the farthest one and replace it with the
incoming values (color, depth, mask)

Dynamic Coverage Anti-aliasing

Update phase:
for each triangle that overlaps our pixel:

 IM = 0

 for each coverage sample within the pixel:

 if coverage sample is covered by the triangle:

 set IM[coverage sample index] = 1

 if ID is < SD0 or ID is < SD1:

 if SD0 < SD1:

 SC1 = IC, SD1 = ID, SM1 = IM

 else:

 SC0 = IC, SD0 = ID, M0 = IM

For each pixel we maintain the following storage. At the start of the frame all

masks are initialized to 0xFFFF, colors to clear color, depth to DEPTH_MAX.

SC0 = sample 0 color, SC1 = sample 1 color

SD0 = sample 0 depth, SD1 = sample 1 depth

SM0 = sample 0 mask, SM1 = sample 1 mask

When writing shaded fragments to our buffers we also define:

IC = incoming color, ID = incoming depth, IM = incoming mask

At the end of our frame we resolve our samples with:

TCC = number of unique bits set across SM0 and SM1

SMC0 = count of bits set in SM0

SMC1 = count of bits set in SM1

Resolve phase:
if SD0 < SD1:

 output color =

 (SC0 * SMC0 + SC1 * (SM1 & ~SM0)) / TCC

else:

 output color =

 (SC1 * SMC1 + SC0 * (SM0 & ~SM1)) / TCC

Output equals the weighted average of our
cached samples, with weights computed by
sample coverage of the pixel

Whiteboarding time
(let’s explore edge cases)

DISCUSS & DEBRIEF

What cases did you discuss?

Partial triangle overlap of a pixel without any coverage?

Thin triangle overlap with no majority coverage?

Many triangle overlaps with equal coverage?

Method Storage costs Pixel shader costs Output color

No AA 18 bytes
(1x color, 1x depth) 1x pixel shader passes

4x Supersample 72 bytes
(4x color, 4x depth) 4x pixel shader passes

4x Multisample 72 bytes
(4x color, 4x depth) 1x pixel shader passes

2x Dynamic coverage 40 bytes
(2x color, 2x depth, 2x masks) 1x pixel shader passes

THE PROBLEMSummary

rgb(217, 210, 233)

rgb(221, 223, 228)Theoretically correct value:

rgb(217, 216, 228)

rgb(227, 227, 233)

rgb(217, 219, 225)

