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DYNAMIC FRAGMENT COVERAGE 
ANTIALASING 

PRIORITY CLAIM 

The present application claims benefit under 35 U.S.C. 
S119(e) of provisional U.S. patent application No. 61/149. 
326 filed Feb. 2, 2009. The disclosure of the above-referenced 
provisional application is incorporated herein by reference. 

BACKGROUND 

Typically, computer graphics are generated onscreen using 
a graphics pipeline. For example, information including 
attached vertices may be input from a processor into the 
pipeline. Such information may be converted into a three 
dimensional world space comprised of primitives that may be 
transformed into a two dimensional image. Typically, the two 
dimensional image is constructed of small objects called frag 
ments. Fragments include rasterized results of processed 
primitives that may be mathematically described polygons. 
Fragments may include, for example, assigned values 
describing their color, depth and other functions. Such frag 
ments may be rendered as pixels for a two dimensional image 
on a visual display or print Surface. Typically, the two dimen 
sional image may be aliased or jagged when, for example, 
Such fragments may be rendered. Unfortunately, to remove 
Such aliasing orjaggedness, a large amount of memory and/or 
bandwidth of the system rendering the primitives as pixels 
may be consumed. 

SUMMARY 

The following discloses antialiasing systems and methods. 
In one embodiment, information about one or more fragments 
or primitives in a pixel area may be stored in the graphics 
pipeline. The stored information associated with graphical 
data may include, for example, depth, color, and location 
information. The stored information may also include cover 
age information including pixel coverage by the graphical 
data. According to an example embodiment, the stored infor 
mation may be dynamically mapped. For example, the stored 
information may be associated with a location that the graphi 
cal data covers, without being tied to specific points in a pixel 
area. In one embodiment, the coverage information may be 
tracked at a higher frequency across the pixel than other 
information about the fragment or primitive. For example, a 
specified number of fragments may be stored per pixel area, 
however the number of coverage points in a pixel area that 
may track a fragment and be associated with a fragment when 
a fragment covers the pixel area may be greater by any factor, 
for example, 2x, or 2.5.x, or any other rational number. Cov 
erage may also be determined using analytical methods. For 
example, coverage may also be determined by parametric 
descriptions of polygon-pixel interception with processing 
algorithms, or triangle lists defining coverage Volumes. 

According to an example embodiment, first graphical data 
previously stored for a pixel may be compared with informa 
tion about second graphical data that enters a pixel area. For 
example, information about second graphical data that enters 
a pixel area may be received and pixel coverage data may be 
associated with Such graphical data. Features of the second 
graphical data that enters a pixel, including depth, coverage or 
any other feature may be compared with coverage informa 
tion or other information associated with first graphical data 
that may be previously stored in the pixel. The first graphical 
data or the second graphical data that enters a pixel area may 
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2 
then be deleted based on the comparisons. If the first graphi 
cal data is deleted based on the comparisons, the second 
graphical data may be stored in its place. First graphical data 
that is not discarded may also be updated based on the com 
parisons. As used herein, first graphical data may imply one or 
more primitives or fragments, and second graphical data may 
also imply one or more primitives or fragments. 
The preserved graphical data associated with a pixel area 

may then be written on a graphical display. In one embodi 
ment, the preserved graphical data associated with the pixel 
area may be written on the graphical display after a resolve 
process. The resolve process may use relative coverage areas 
of the graphical data in a pixel for a weighted merging of the 
data in one embodiment. Additionally, the resolve process 
may take into account information in neighboring pixels 
when, for example, coverage points in a pixel area do not 
include graphical data associated therewith. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 depicts an example embodiment of an open com 
puting System. 

FIG. 2 depicts an example embodiment of a closed com 
puting System. 

FIG.3 depicts a block diagram of an example embodiment 
of a graphics pipeline. 

FIG. 4 depicts a block diagram of an example embodiment 
of a system that may include dynamic fragment coverage 
antialiasing logic. 

FIG. 5 depicts a flow diagram of an example embodiment 
of a method of dynamic fragment coverage antialiasing. 

FIGS. 6A-6D depict a flow diagram of an example embodi 
ment of logic for dynamic fragment coverage antialiasing. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

In the present application, graphical data in the graphical 
pipeline from the point of entry until the rasterization process 
is known as “primitives'. Data in the graphical pipeline that 
may be used for creating a graphical output from the raster 
ization process until the end of the graphical pipeline is 
known as “fragments'. Fragments and primitives are collec 
tively called “graphical data”. 

FIG. 1 depicts a block diagram of an example open com 
puting environment in which dynamic fragment coverage 
antialiasing may be executed. For purposes of simplicity, not 
all components or interconnectivity are shown and some 
components have been merged into other components shown 
in FIG. 1. Although categorization may vary in degree from 
one system to the next, open computing environments are 
general purpose computing environments that may execute 
virtually any program while closed systems tend to be more 
specialized with one or more specific purpose(s) designed to 
execute, perhaps in addition to general programs, privileged 
programs specifically created for them. Examples of closed 
systems may include, for example, cable set top boxes, Smart 
phones, gaming consoles and cellular telephones. Although 
not required, various aspects of dynamic fragment coverage 
antialiasing that may be executed may be described in the 
general context of computer executable instructions, such as 
program modules, being executed by a personal computer, 
client workstation, server or other computing system. Gener 
ally, program modules include routines, programs, objects, 
components, data structures and the like that perform particu 
lar tasks or implement particular abstract data types. More 
over, implementation of dynamic fragment coverage anti 
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aliasing may be practiced with other computer system 
configurations, including hand held devices, multiprocessor 
systems, microprocessor based or programmable consumer 
electronics, network PCs, minicomputers, mainframe com 
puters, or the like. Further, dynamic fragment coverage anti 
aliasing may be practiced in distributed computing environ 
ments where tasks are performed by remote processing 
devices that are linked through a communications network. In 
a distributed computing environment, program modules may 
be located in both local and remote memory storage devices. 
A computer system may be roughly divided into three 

component groups: the hardware component, the hardware/ 
Software interface system component, and the application 
programs component (also referred to as the “user compo 
nent' or “software component'). In various embodiments of 
a computer system the hardware component may comprise 
central processing unit (CPU) 120, memory (both ROM 111 
and RAM 113), various input/output (I/O) devices such as 
keyboard 152, mouse 151, display 126, and/or printer (not 
shown), among other components. To some degree, initial 
ization firmware such as basic input/output system (BIOS) 
112 may be considered part of the hardware component as 
well as part of the hardware/software interface system com 
ponent. The hardware component comprises the basic physi 
cal infrastructure for the computer system. 
The application programs component comprises various 

Software programs including but not limited to compilers, 
database systems, word processors, business programs, video 
games, and so forth. Application programs provide the means 
by which computer resources are utilized to solve problems, 
provide Solutions, and process data for various users (ma 
chines, other computer systems, and/or end-users). 
The hardware/software interface system component com 

prises (and, in Some embodiments, may solely consist of) an 
operating system that itself comprises, in most cases, a shell 
and a kernel. As previously noted, firmware such as BIOS 
may also be considered part of the hardware/software inter 
face system. An "operating system” (OS) is a special program 
that acts as an intermediary between application programs 
and computer hardware. The hardware/software interface 
system component may also comprise a virtual machine man 
ager (VMM), a Common Language Runtime (CLR) or its 
functional equivalent, a Java Virtual Machine (JVM) or its 
functional equivalent, or other Such software components in 
the place of or in addition to the operating system in a com 
puter system. In addition to performing initialization tasks, 
depending on the system BIOS may also provide some level 
of interface between hardware and software that may not be 
performed by the operating system. A purpose of a hardware/ 
Software interface system is to provide an environment in 
which a user may execute application programs. 

The hardware/software interface system may be generally 
loaded into a computer system during initialization and there 
after manages all of the application programs in the computer 
system. The application programs interact with the hardware/ 
Software interface system by requesting services via an appli 
cation program interface (API). Some application programs 
enable end-users to interact with the hardware/software inter 
face system via a user interface such as a command language 
or a graphical user interface (GUI). 
A hardware/software interface system traditionally per 

forms a variety of services for applications. In a multitasking 
hardware/software interface system where multiple programs 
may be running at the same time, the hardware/software 
interface system determines which applications should run in 
what order and how much time should be allowed for each 
application before Switching to another application for a turn. 
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4 
The hardware/software interface system also manages the 
sharing of internal memory among multiple applications, and 
handles input and output to and from attached hardware 
devices such as hard disks, printers, and dial-up ports. The 
hardware/software interface system also sends messages to 
each application (and, in certain case, to the end-user) regard 
ing the status of operations and any errors that may have 
occurred. The hardware/software interface system may also 
offload the management of batch jobs (e.g., printing) so that 
the initiating application may be freed from this work and 
may resume other processing and/or operations. On comput 
ers that may provide parallel processing, a hardware/software 
interface system also manages dividing a program So that it 
runs on more than one processor at a time. 
A hardware/software interface system shell (referred to as 

a “shell’) is an interactive end-user interface to a hardware/ 
software interface system. (A shell may also be referred to as 
a “command interpreter” or, in an operating system, as an 
“operating system shell’). A shell is the outer layer of a 
hardware/software interface system that is directly accessible 
by application programs and/or end-users. In contrast to a 
shell, a kernel may be a hardware/software interface systems 
innermost layer that interacts directly with the hardware com 
ponents or their device drivers and/or the BIOS. 
As shown in FIG. 1, an example open computing environ 

ment 100 in which in which dynamic fragment coverage 
antialiasing may be executed may include a conventional 
computing device 105 or the like, including processing unit 
120, system memory 110, and system bus 165 that couples 
various system components including system memory 110 to 
processing unit 120. Computing device 105 may be any vari 
ety of computing device such as, but not limited to, a personal 
computer, laptop, hand-held computer, cellular phone or 
server. Processing unit 120 may comprise, for example, a 
CPU, Northbridge and Southbridge chipset with their well 
known functionality, among other components. System bus 
165 may be any one or all of several types of bus structures 
including a memory bus, peripheral bus and a local bus using 
any of a variety of bus architectures. System memory 110 
includes read only memory (ROM) 111 and random access 
memory (RAM) 113. Basic input/output system (BIOS) 112, 
containing basic routines that help to transfer information 
between elements within the computing device 105, such as 
during initialization, may be stored in ROM 111. Among 
other functionality such as a power on self-test or POST as it 
is commonly known, BIOS 112 may include a computer 
initialization program Such as a bootloader stage to load other 
initialization stages or load and turn over control to operating 
system 114. While the only BIOS shown is BIOS 112, some 
hardware devices such as optical drives may have their own 
BIOS or other necessary initialization firmware, which may 
be executed in addition to BIOS 112 during initialization of 
computing device 105. ROM 111 may include embedded 
memory, e.g., within the CPU of processing unit 120, and/or 
one or more discrete non-volatile memory devices, including 
flash memory. 
Computing device 105 may further include hard disk drive 

136 for reading from and writing thereto operating system 
114, application programs 115, other programs 116, program 
data 117 or other information, magnetic disk drive 141 (e.g. 
floppy disk drive) for reading from or writing to removable 
storage 142 or other magnetic disk operating system 114, 
application programs 115, other programs 116, program data 
117 or other information, and optical disk drive 146 for read 
ing from or writing to removable optical disk 147. Such as a 
CDROM or other optical media, operating system 114, appli 
cation programs 115, other programs 116, program data 117 
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or other information. Hard disk drive 136, magnetic disk drive 
141, and optical disk drive 146 are connected to system bus 
165 by a hard disk drive interface 135, magnetic disk drive 
interface 140, and optical disk drive interface 145, respec 
tively. The example environment of FIG. 1 also includes 
universal serial bus (USB) controller 130, USB 131 and USB 
device 132 (e.g. removable USB flash memory or hard disk 
drive). USB device 132 may be coupled to system bus 165 via 
universal Serial bus 131 and USB controller 130. The drives 
and their associated computer readable media provide non 
Volatile storage of computer executable instructions, data 
structures, program modules and other data for computing 
device 105. Similarly, USB device 132 may also comprise 
removable non-volatile memory such as a USB flash or hard 
drive, among a host of other devices. Although the example 
environment described herein employs hard disk 136, remov 
able magnetic disk 142, removable optical disk 147 and 
removable USB device 132, it is well known that a computing 
system may employ many other types offixed and removable, 
Volatile and non-volatile computer readable media. Likewise, 
the example environment may also include many types of 
monitoring devices Such as heat sensors and security or fire 
alarm systems, and other sources of information. 

Data and any number of program modules comprising 
computer-executable instructions, such as BIOS 112 or other 
initialization program, operating system 114, application 
programs 115, other program modules 116 and data Such as 
program data 117, may be stored on any one or more com 
puter-readable mediums such as hard disk drive 136, mag 
netic disk 142, optical disk 147, ROM 111 (e.g. ROM, 
EEPROM, flash memories, eFuses), USB device 132, RAM 
113 or any other discrete or embedded, volatile or non-vola 
tile memories (not shown). A user may enter commands and 
information into computing device 105 through input devices 
Such as keyboard 152 and a pointing device Such as mouse 
151. A wide variety of other input devices (not shown) may 
include, for example, a microphone, joystick, game pad, tab 
let or scanner. These and other input devices are often con 
nected to processing unit 120 through a serial port interface 
150 that may be coupled to system bus 165, but may be 
connected by other wired or wireless interfaces. Such as a 
parallel port, game port, universal serial bus (USB) or 
Firewire. Display 126 or other type of display device may be 
also connected to system bus 165 via an interface such as 
graphics controller 125. In addition to display 126, comput 
ing devices typically include other peripheral output devices, 
Such as speakers and printers (not shown). 
Computing device 105 may operate in a local and/or wide 

area network environment using logical connections to one or 
more remote computers, such as remote computer(s) 160. 
Remote computer(s) 160 may be another computing device 
(e.g., personal computer), a server, a router, a network PC, a 
peer device, or other common network node, and typically 
includes many or all of the hardware, firmware and software 
elements described above relative to computing device 105. 
The logical connections depicted in FIG. 1 include a local 
area network (LAN) 161 and wide area network (WAN) 162 
Such as the Internet. Such networking environments are com 
monplace in offices, enterprise wide computer networks, 
intranets and the Internet. When used in a LAN networking 
environment, computing device 105 may be connected to 
LAN 161 through network interface 155. When used in a 
WAN networking environment, computing device 105 may 
include modem 153 or other means for establishing commu 
nications over WAN 162, such as the Internet. While modem 
153, which may be internal or external to computer 105, is 
shown connected to system bus 165 via serial port interface 
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6 
150, it may be connected in a variety of other ways. In a 
networked environment, program modules, or portions 
thereof, may be stored in a remote memory storage device. It 
will be appreciated that the network connections shown are 
exemplary and other means of establishing a communications 
link between computer 105 and remote computer(s) 160 may 
be employed. 

While it may be envisioned that numerous embodiments of 
dynamic fragment coverage antialiasing are particularly 
well-suited for computerized systems, nothing in this docu 
ment is intended to limit dynamic fragment coverage anti 
aliasing to such embodiments. On the contrary, as used herein 
the term "computer system’ is intended to encompass any and 
all devices capable of storing and processing information 
and/or capable of using the stored information to control the 
behavior or execution of the device itself, regardless of 
whether Such devices are electronic, mechanical, logical, or 
virtual in nature. 
Dynamic fragment coverage antialiasing implemented in, 

for example, computer 105 may be implemented in connec 
tion with hardware, firmware or software or a combination 
thereof. Thus, the methods, apparatuses and systems for 
dynamic fragment coverage antialiasing, or certain aspects or 
portions thereof, may take the form of program code (i.e., 
instructions) and/or data embodied in tangible computer 
readable media, Such discrete or embedded memories such as 
hard disk drives, magnetic disks, optical disks, USB devices, 
ROM memories, flash memories, eFuses or any other 
machine-readable storage medium, wherein, when the pro 
gram code or data may be loaded into and executed or read by 
a machine. Such as computer device 105, the machine 
becomes an apparatus for implementing dynamic fragment 
coverage antialiasing. The program(s) may be implemented 
in assembly or machine language, if desired. In any case, the 
language may be a compiled or interpreted language, and 
combined with hardware implementations. The methods and 
apparatuses for implementing dynamic fragment coverage 
antialiasing also may be practiced via communications 
embodied in the form of program code that may be transmit 
ted over some transmission medium, Such as over electrical 
wiring or cabling, through fiber optics, or via any other form 
of transmission, wherein, when the program code may be 
received and loaded into and executed by a machine. Such as 
an EPROM, a gate array, a programmable logic device (PLD), 
a client computer, or the like. When executed by a processor, 
the program code combines with the processor to provide a 
unique apparatus that operates to invoke the functionality of 
dynamic fragment coverage antialiasing. Additionally, any 
storage techniques used in connection with dynamic frag 
ment coverage antialiasing may invariably be a combination 
of hardware, firmware and software. 

Without limitation, FIG. 2 depicts a block diagram of an 
example closed computing environment in which various 
aspects of dynamic fragment coverage antialiasing may be 
implemented. Closed computing devices tend to be more 
specialized, or have at least one specialized purpose, relative 
to general purpose computing devices. Closed systems tend 
to have one or more specific purpose(s) designed to execute, 
perhaps in addition to general programs, privileged programs 
specifically created for them. Examples of closed systems 
may include, for example, cable set top boxes, Smartphones, 
gaming consoles such as Microsoft's Xbox 360 and cellular 
telephones that execute one or more privileged programs. As 
an example of what makes the Xbox 360 a closed computing 
environment, at least in part, is that it is designed to gain 
restricted access to services such as Xbox LIVE and Xbox 
LIVE Marketplace located at http://www.xbox.com. Xbox, 
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Xbox 360 and Xbox LIVE are registered trademarks of 
Microsoft Corporation, One Microsoft Way, Redmond, 
Wash. 98.052-6399. Xbox LIVE is a full spectrum online 
gaming and entertainment service. Besides providing online 
multiplayer gaming, through Xbox Live and Xbox LIVE 
Marketplace, customers may download purchased and pro 
motional content to their Xbox 360, including high definition 
and standard definition television shows, movies, gaming 
Videos, music videos, short feature films, video games, dash 
board themes, slideshows, gamer pictures, game trailers/ 
demos, movies, game content Such as new maps, weapons, 
levels, characters, challenges, expansions, arcade games, 
demos and trailers. 

FIG. 2 depicts a block diagram of an example gaming 
console such as an Xbox 360. Game console 200 comprises 
hardware, firmware and software. Game console 200 com 
prises a computer system. Game console 200 executes game 
applications and plays generic and specialized media files 
(not shown). For purposes of simplicity, not all components 
or interconnectivity are shown and some components have 
been merged in example game console 200. Game console 
200 comprises central processing unit (CPU) 201, which has 
multiple CPU cores 202, 203, 204, each having embedded 
cache such as level 1 (L1) cache 208. CPU 201 further com 
prises level 2 (L2) cache 205, ROM (Read-Only Memory) 
206 and fuses 207. CPU cores 202,203 and 204 may share L2 
cache memory 205. Level 1 and Level 2 cache 208, 205 
temporarily store executable instructions and/or data, thereby 
improving processing speed and throughput. ROM 206 may 
store firmware such as BIOS or other initialization programs 
and data loaded during an initial phase or stage of a boot 
process such as when game console 200 may be initially 
powered on. Alternatively, or in addition, the BIOS or other 
initialization programs and data loaded during one or more 
initialization phases/stages may be stored in another type of 
non-volatile memory such as flash (a type of EEPROM) 
memory, as may be represented by System memory 243, or 
fuses 207. In some embodiments, fuses 207 may be electroni 
cally programmable. In some embodiments, ROM 206, fuses 
207, and alternative non-volatile memory storing initializa 
tion programs and/or data need not be embedded within CPU 
201. However, physically locating memory devices that store 
initialization programs or data in CPU 201 may offer an 
added layer of security for Such information. Game console 
200 may optionally be a multi-processor system. For 
example, game console 200 may have three processors that 
are similar or dissimilar to processor 201. 
Game console 200 further comprises graphics processing 

unit (GPU) 209, which may be coupled to CPU 201, and any 
additional processors, by abus. GPU 209 may be also coupled 
by one or more busses each to memory controller 210, I/O 
(input/output) hub 218 and video codec (coder/decoder) 214. 
Memory controller 210 and video codec 214 may form part of 
GPU209. GPU 209, in addition to video processing function 
ality, may comprise functionality commonly referred to as 
Northbridge. Northbridge functionality generally comprises 
a high speed memory and video hub having a memory con 
troller and a video controller. In example game console 200, 
both CPU 201 and I/O hub (Southbridge) 218 access main 
memory 212 through Northbridge functionality in GPU 209. 
Memory controller 210 facilitates access to various types of 
main memory 212, which may be RAM (Random Access 
Memory) or other variety of memory. 

GPU. 209 and video codec 214 together form a video pro 
cessing pipeline for high speed, high resolution graphics pro 
cessing required by many game applications. Data may be 
carried from GPU 209 to/from video codec 214 via a bi 
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8 
directional bus. This video processing pipeline outputs data to 
A/V (audio/video) port 240 for transmission to a television or 
other video display device (not shown). Game console 200 
may have its own integrated display (not shown). Not shown 
is a digital to analog converter (DAC) that may be coupled 
between video codec 214 and A/V port 240. 
Game console 200 further comprises I/O hub 218, which 

may comprise, among other functionality, functionality com 
monly referred to as Southbridge. Southbridge functionality 
generally performs and controls functions that are relatively 
slow compared to functions performed and controlled by 
Northbridge. I/O hub 218 comprises IO controller 220, sys 
tem management controller 222, audio processing unit 223, 
network interface controller 224, USB host controllers 226, 
228 and front panel I/O subassembly 230. USB controllers 
226, 228 serve as hosts for peripheral controllers 242(1), 
242(2), wireless adapter 248, and memory unit 246 (e.g., flash 
memory, CD/DVD ROM, hard drive, other removable 
media). Network interface 224 and/or wireless adapter 248 
provide access to a network (e.g., LAN, WAN or Internet) and 
may be any of a wide variety of various wired or wireless 
interface components including an Ethernet card, modem, 
Bluetooth module, and the like. 

System memory 243 may be volatile and/or non-volatile 
memory, including flash memory. In some embodiments sys 
tem memory 243 may store all or a portion of the initialization 
program and data (e.g. Various bootloader stages) and oper 
ating system that may be loaded during the initialization boot 
process. In other embodiments, system memory 243 may 
store application data, game saves and downloads. Media 
drive 244 may comprise, for example, a DVD/CD drive, hard 
drive or other fixed or removable media reader and/or writer. 
Game application data may be read from and/or written to 
media via media drive 244 for execution, playback, etc. by 
game console 200. Media drive 244 may be connected to I/O 
controller 220 via a bus, such as a Serial ATA bus or other high 
speed connection (e.g., IEEE 5394). Game console 200 may 
include hard disk 252, which may be used, for example, to 
store all or a portion of the initialization program and data 
(e.g. various boot loader stages) and operating system that 
may be loaded during the initialization boot process, game 
applications, game data or other types of data. 

System management controller 222 provides a variety of 
service functions for game console 200. Audio processing 
unit 223 and audio codec 232 form a corresponding audio 
processing pipeline that may provide high fidelity, 5D, Sur 
round, and stereo audio processing of sounds produced by, for 
example, a game application. Audio data may be carried 
between audio processing unit 223 and audio codec 232 via a 
communication link. The audio processing pipeline outputs 
audio data to A/V port 240 for implementation by a device 
having audio capabilities. 

Front panel I/O subassembly 230 supports the functional 
ity of various controls such as power button 250 and eject 
button 252, as well as any LEDs (light emitting diodes) or 
other indicators exposed on the outer Surface of game console 
200. System power supply module 236 provides power to 
components of game console 200 while fan 238 cools them. 
CPU 201, GPU 209, memory controller 210, and various 

other components within game console 200 are intercon 
nected via one or more buses, including serial and parallel 
buses, a memory bus, a peripheral bus, and a processor or 
local bus using any of a variety of bus architectures. As 
previously noted, not all buses or other connections and com 
ponents are shown in FIG. 2. 
When game console 200 may be powered on or rebooted, 

aside from initialization, application data and/or instructions 
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may be loaded from system memory 243, media drive 244, 
hard disc 253 or other memory into main memory 212 and/or 
caches 205, 208 and executed on CPU 201. The game appli 
cation being executed may present a graphical user interface 
that provides a consistent user experience when navigating to 
different media types available on or to game console 200. 
Instructions and/or data accessible via media drive 244, sys 
tem memory 243, hard disk 253 or other memory may be 
launched, played or otherwise accessed from these various 
Sources to provide additional functionality to game console 
2OO. 
Game console 200 may be operated as a stand-alone sys 

tem by connecting the system to a television or other display. 
As previously noted, game console 200 may have an inte 
grated display. In this stand-alone mode, game console 200 
may allow one or more users to interact with the system, 
watch movies, listen to music, play games and the like. Net 
work interface 224 or wireless adapter 248 may allow game 
console 200 to be operated as a participant in a local or wide 
area network community such as Xbox LIVE. 

FIG.3 depicts a block diagram of an example embodiment 
of the front end of graphical pipeline 300. The graphical 
pipeline 300 may be used to, for example, render an output to 
provide to a rasterizer and dynamic fragment coverage anti 
aliasing logic disclosed below. The dynamic fragment cover 
age antialiasing logic may be used to determine the fragments 
to be used for shading a pixel that may be displayed via a 
display device such as the display 126 described above with 
respect to FIG.1. The graphical pipeline 300 may be mapped 
onto graphics acceleration hardware in, for example, the 
graphics controller 125 described above with respect to FIG. 
1 or the GPU 209 described above with respect to FIG. 2. 
The graphical pipeline 300 may include hardware compo 

nents such as servers, controllers, databases, processors, Stor 
age drives, registers, cache, RAM memory chips, data buses, 
or the like and/or software components such as graphics 
rendering applications. 

According to one embodiment, the graphical pipeline 300 
may convert a three-dimensional model or scene received 
from a processor into the 2D output that may be displayed via 
a display device. For example, the graphical pipeline 300 may 
receive input data 301 including, for example, a graphical 
model from, for example, the CPU 201 described above with 
respect to FIG. 2. The input data 301 may include primitives, 
which may include mathematical polygons such as triangles, 
hexagons, or the like that may be modeled in a modeled scene 
Such as a model space 302. In an example embodiment, a 
coordinate system may be established such that primitives 
may be properly situated in the three-dimensional model 
space 302. The model space 302 may be converted into a 
three-dimensional world space 303, a view space 304, and a 
projection space 305. It may be converted in discrete indi 
vidual stages, a single stage resulting from a concatenation of 
matrix transforms, or any combination thereof. 
The graphical pipeline 300 may clip and process primitives 

expressed in projection space from transformation 305 after 
the primitives have been transformed from view space, and 
after primitives in projection space are transformed to clip 
space 306. The graphical pipeline 300 may provide the 
clipped and processed contents of the three-dimensional 
scene from the clipping unit into the rasterizer 400. According 
to one embodiment, the transformed projected view may be 
established by, for example, placing a virtual “camera' in the 
three dimensional world space 303. In one embodiment, the 
virtual camera may be positioned based on a location of for 
example, a user that may view the two-dimensional output via 
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a display device. Based on the positioning of the virtual 
camera, a coordinate system may be established for view and 
projection space. 
The graphical pipeline 300 may also provide, for example, 

the clipped and processed scene data for further processing in 
dynamic fragment coverage antialiasing logic that may be 
used to determine which fragments should be sent to a final 
resolve process for output to a display such as 126 described 
above. 
The graphical pipeline 300 may further rasterize the 

clipped scene. For example, the graphical pipeline 300 may 
include a rasterizer 400. According to an example embodi 
ment, the rasterizer 400 may render primitives associated 
with the clipped data from clip space 306 into fragments that 
may form a graphical image 310. For example, the clipped 
data from clip space 306 may be divided into a two dimen 
sional array of pixels. The rasterizer 400 may then render the 
primitives into pixel areas that may form a graphical image 
310. The graphical image 310 may be output to a display 
device such as the display 126 described above with respect to 
FIG.1. According to an example embodiment, the rasterizer 
400 may also provide antialiasing on the scene 306 during 
rendering of the graphical image 310. 

FIG. 4 depicts an example embodiment of a block diagram 
of the data flow for dynamic fragment coverage antialiasing. 
According to an example embodiment, as described above 
the rasterizer 400 may associate information such as primi 
tives 401, data from the shader 404, and fragments 405, 407 
that may be in a graphical pipeline Such as the graphical 
pipeline 300 with one or more pixels based on the locations of 
the graphical data in a two dimensional scene. According to 
an example embodiment, primitives may be rasterized into 
fragments that represent one or more Sub pixel areas that may 
be inside, in whole or in part, of a pixel area. 
The primitives 401, data from the shader 404, and frag 

ments 405, 407, and pixel data may include information or 
data that may represent at least a portion of an object in three 
dimensional world space Such as the three dimensional world 
space 302 described above with respect to FIG. 3. For 
example, as shown in FIG. 4, the information or data associ 
ated with the primitives 401, data from the shader 404, and 
fragments 405, 407, and pixels may include location data, 
shader and lighting information, projected depth in the three 
dimensional world space including, for example, the distance 
to an object from the virtual camera in a projected Scene, 
position, texture coordinates, normal vector, tangent vector, 
binormal vector, blend weights, blend indices, tessellation 
terms, material information, colors, fog information, stencil 
data, translucency information, motion information, lighting 
and material information (e.g. deferred rendering), or the like. 

According to an example embodiment, the primitive 401 
may be received by the rasterizer 400 from, for example, the 
CPU 201 described in FIG. 2 and/or from previous stages in 
a graphical pipeline Such as the graphical pipeline 300 
described in FIG. 3. As described above the primitive 401 
may include primitive information associated therewith 
including, for example, location information or any other 
suitable information associated with the primitive 401 as 
described above. 
As shown in FIG. 4, the rasterizer 400 may include 

dynamic fragment coverage antialiasing logic 402. The 
dynamic fragment coverage antialiasing logic 402 may 
include hardware components such as servers, controllers, 
databases, processors, storage drives, registers, cache, RAM 
memory chips, ROM memory chips, data buses, or the like 
and/or software components such as graphics rendering 
applications. 
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According to one embodiment, the dynamic fragment cov 
erage antialiasing logic 402 may provide stored information 
including, for example, fragments 405, 407 and/or or the 
shader data 404. In an example embodiment, the stored infor 
mation including, for example, fragments may have been 
stored during previous renderings of graphical images on a 
display such as display 126 described above in FIG. 1 and/or 
in prior dynamic fragment coverage antialiasing logic 
sequences 402. The stored graphical data may include infor 
mation Such as shader and lighting information, projected 
depth in space including, for example, the distance to an 
object from the virtual camera in a projected Scene, position, 
normal vector, tangent vector, binormal vector, colors, fog 
information, stencil data, translucency information, motion 
information, lighting and material information (e.g. deferred 
rendering), or the like. 

According to an example embodiment, the dynamic frag 
ment coverage antialiasing logic 402 may include informa 
tion 401, 405, and 407, and other data such as shader data 404. 
The dynamic fragment coverage antialiasing logic 402 may, 
for example, compare the fragments or primitives based on 
the information associated therewith including, for example, 
depth, coverage area within a pixel, location, intensity, or the 
like. In an example embodiment, the dynamic fragment cov 
erage antialiasing logic 402 may be triggered upon entry of 
new information Such as a primitive or a fragment into a pixel 
aca. 

According to one embodiment, the dynamic fragment cov 
erage antialiasing logic 402 may divide a pixel space into 
coverage areas and associate the divided coverage areas with 
individual points in the coverage area. These points may be 
used to, for example, determine which fragments or primi 
tives cover the point. In an example embodiment, when a 
coverage point in a coverage area is covered by a primitive or 
fragment, the larger coverage area is associated with the 
fragment or primitive that covers the point. This association 
may take the form of a coverage mask, where the coverage 
mask may be implemented by a single binary string having a 
place holder for each coverage area in a pixel that may be a 1 
if a particular fragment or primitive is associated with the 
coverage area, and that may be 0 if a fragment or pixel is not 
associated with that area. 

According to an example embodiment, a primitive or frag 
ment may be evaluated for the depth of the primitive at several 
points across the primitive based on its coverage of a pixel 
area. Dynamic fragment coverage antialiasing logic 402 may 
average the depth of the primitive or fragment at each of the 
visible (i.e. non-occluded) coverage points on a pixel and 
associate a single depth term with the visible portion of the 
fragment that covers a pixel area. 
The dynamic fragment coverage antialiasing logic 402 

may also include a comparison logic 410. The comparison 
logic 410 may compare the depth or coverage area of two or 
more fragments or primitives in a pixel area. According to one 
embodiment, if for example, two or more fragments or primi 
tives occupy the same coverage point in the two dimensional 
space in a pixel area, but one or more of the fragments or 
primitives may be located in front of another based on the 
depth in a projected view such as the projected view from the 
projection space transform 305, the covered portion of the 
primitive or fragment of farther depth may be discarded. The 
coverage point may then be associated with the fragment or 
primitive having the nearest distance to the projected view. 
The comparison logic 410 may also perform additional com 
parisons of the information associated with the primitives and 
fragments including, for example, the coverage area of the 
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pixel, the intensity or color, or any other Suitable information 
associated with the primitives or fragments, or both. 

According to an example embodiment, each pixel area may 
have two or more stored fragments or primitives associated 
therewith. Additionally, each fragment or primitive may 
include information Such as coverage, color, depth, translu 
cency, intensity or the like associated therewith. In one 
embodiment, the coverage of the pixel may be expressed 
through discrete two dimensional point locations maintained 
at a higher frequency than the number of fragments or primi 
tives associated with each pixel. For example, the number of 
coverage points may be greater than the number of fragments 
stored. In one embodiment, the number of coverage points 
may be a factor greater than the number of stored fragments, 
where the factor may be any number greater than one. In one 
embodiment, the coverage, color, depth, translucency, inten 
sity and other information associated with each fragment or 
primitive may be stored per fragments or primitives, and have 
associated therewith, one or more coverage points in a pixel 
depending on the coverage area. 

According to an example embodiment, graphical data may 
be stored at any location in a pixel area where the graphical 
data has non-occluded pixel area coverage. Such information 
or data associated with fragments or primitives as described 
above may be stored in a single instance and have the cover 
age of the pixel area associated with the fragment informa 
tion. Thus, the stored data for each fragment may be associ 
ated with a dynamic area of the pixel and its visibility is not 
tied to a single fixed point location within the pixel space. 

Additionally, when a primitive or fragment enters into a 
pixel area, a comparison of depth may take place between it 
and each of the primitives or fragments stored for the pixel. If 
coverage of the entering fragment intersects with the cover 
age of a stored fragment, the intersecting coverage area may 
associate with the fragment that is nearer in depth to the 
projected view and disassociate with the fragment that is 
further away. Such visibility association may be used with 
size of fragment areas in prioritizing the importance of vari 
ous fragments relative to one another. 
The dynamic fragment coverage antialiasing logic 402 

may also rank fragments or primitives based on the compari 
Sons described above. For example, the dynamic fragment 
coverage antialiasing logic 402 may determine a ranking 
associated with for example, which portions of a pixel area 
may have more non-occluded coverage by a primitive or 
fragment and, thus, which fragments should be discarded or 
preserved for ultimate display. According to an example 
embodiment, the rankings may be used to discard a fragment 
Such as 407, or to store a fragment, or any combination 
thereof. 
As shown in FIG. 4, dynamic fragment coverage antialias 

ing may include a pixel shader 403. The pixel shader 403 may 
include hardware components such as servers, controllers, 
databases, processors, storage drives, registers, cache, RAM 
memory chips, ROM memory chips, data buses, or the like 
and/or software components such as graphics rendering 
applications such that the pixel shader 403 may determine 
fragment color, modify depth, and modify coverage based on 
any information associated with determination of such data in 
the fragment or primitive. 

According to one embodiment, the pixel shader 403 may 
output shader data 404. The shader data 404 may be used in a 
graphics pipeline Such as the graphical pipeline 300 to shade 
a pixel that may be displayed. The shader data 404, including 
for example modified coverage, may also be provided to the 
dynamic fragment coverage antialiasing logic 402 for use in 
reevaluating fragment visibility and priority of preservation. 
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According to an example embodiment, the depths and cov 
erage masks 410 associated with stored pixel fragments 405 
to 407 may be used in conjunction with the depth and cover 
age mask 401 associated with a primitive or fragment pro 
duced by the rasterizer 400 to determine information about 
the coverage of a pixel by the stored and rasterized fragments. 
Such information may be used to compare, rank, cull, modify, 
and store fragments or primitives. For example, as shown in 
FIG. 4, the coverage mask associated with fragment 407 may 
be modified to reflect the fragments updated non-occluded 
visibility after comparison in the dynamic fragment coverage 
antialiasing logic with one or more primitives or fragments as 
described above. According to an example embodiment, the 
coverage mask may be compared with any suitable informa 
tion associated with the primitives and fragments mentioned 
above including, for example, depth, pixel coverage area, 
location, intensity, color, or the like. 

Updates to the coverage masks of 410 by the dynamic 
fragment coverage antialiasing logic 402 may also bring 
about the eviction of, for example, the fragment 407 based on 
comparisons such as depth and coverage or the like. Accord 
ing to example embodiments, the depths and coverage masks 
410 may be used by the dynamic fragment coverage antialias 
ing logic to modify coverage of fragments or primitives. 
Modification of coverage alters the relative areas occupied by 
the fragments inapixel and may thereby effect a discarding of 
the primitives or fragments of less importance. Modification 
may also result in the storage of rasterized fragments deter 
mined to have greater importance. In one embodiment, the 
dynamic fragment coverage antialiasing process may be pro 
vided information about the depths and coverage masks 410 
including, for example, the fragments 405, 407 such that the 
antialiasing logic 402 may use the information to determine 
which fragments or primitives may be discarded and when a 
primitive fragment produced by the rasterizer 400 may be 
preserved. 

According to an example embodiment, dynamically 
mapped primitive or fragment information may be associated 
with a portion of a pixel, where the portion of the pixel may 
change in area and location. In one embodiment, the process 
for dynamically mapping location and area may involve plac 
ing a grid or asymmetrical pattern of coverage points in a 
pixel area that may be associated with one or more primitives 
or fragments when they are covered by each primitive or 
fragment. As a scene changes and another primitive or frag 
ment may be introduced into a pixel area, the coverage points 
in the pixel area with which the introduced primitive or frag 
ment intersect, and the occlusion or non-occlusion of the 
primitive at those points with respect to fragments previously 
introduced into the pixel area, may update the coverage infor 
mation for both the introduced and previous fragments to 
associate coverage locations with stored fragment informa 
tion. Thus, in an example embodiment, dynamically mapping 
location may involve updating the location of the coverage 
with the other data associated with each fragment or primitive 
each time a primitive or fragment enters a pixel area. 
As described above, the pixel shader 403 may include a 

software or hardware module that may be used to shade pixel 
fragments rendered in a graphical pipeline Such as the graphi 
cal pipeline 300 together to determine information about a 
pixel such as color, intensity, or the like. The pixel shader 403, 
or alternatively a dedicated resolve processing logic unit, may 
also merge pixel fragments together to form a final pixel value 
for display, possibly using information from neighboring pix 
els, primitives or fragments or any other available informa 
tion. Thus, in an example embodiment, the pixel shader 403 
may combine fragment information, including color, depth, 
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intensity, coverage, or any other information associated with 
the fragments of a pixel, its neighbors, or any combination 
thereof. 

FIG.5 depicts a flow diagram of an example method 500 of 
dynamic fragment coverage antialiasing. The example 
method 500 may be implemented using, for example, the 
dynamic fragment coverage antialiasing logic 402 described 
above in FIG. 4. At 501, first information associated with one 
or more first primitives or fragments may be received by, for 
example, antialiasing logic Such as the dynamic fragment 
coverage antialiasing logic 402 described above with respect 
to FIG. 4. The antialiasing logic may be included in, for 
example, a rasterizer such as the rasterizer 400 that may 
render a two-dimensional output in a graphics pipeline Such 
as the graphical pipeline 300. According to an example 
embodiment, the first information of the first primitives or 
fragments may have been previously analyzed by the 
dynamic fragment coverage antialiasing logic and stored. 
Such first information may have been used in previous ren 
dering of a graphical data by the dynamic fragment coverage 
antialiasing logic. The first information may include a set of 
one or more fragments or primitives that may have been 
previously analyzed and stored. 
At 502, second information of a second primitive or frag 

ment may be received by, for example, the dynamic fragment 
coverage antialiasing logic. According to one embodiment, 
the second information may be received upon entry of a 
second dynamically mapped primitive or fragment into a 
pixel area. The second information may also include a set of 
one or more fragments or primitives that may enter a pixel 
aca. 

At 503, the depth and coverage of the first and second 
fragments or primitives may be compared. For example, the 
antialiasing logic may include a comparison logic Such as the 
comparison logic 402 described above with respect to FIG. 4. 
In one embodiment, the first and second fragments or primi 
tives may be compared based on their relative depths in the 
pixel area and their coverage of the pixel using, for example, 
the comparison logic. Comparisons of any other information 
included in the first and second primitive information of the 
first and second primitives, as described above with respect to 
FIG.4, may also be performed by, for example, the compari 
son logic at 503. 
At 504, the first or second information may be stored. For 

example, the antialiasing logic may store the first or second 
primitives or fragments based on, for example, the compari 
sons at 503. For example, the first and second primitives or 
fragments may be compared according to their coverage area 
determined by, for example, a comparison of the first and 
second graphical data at 503. The first and second primitives 
or fragments may also be compared based on any combina 
tion of information associated with them as described above. 

First or second information stored at 504 may be used in 
later implementations of dynamic fragment coverage anti 
aliasing. The stored information may be received by the 
dynamic coverage antialiasing logic as the first or second 
information in 501 and 502. 
At 505, graphical data may be discarded. For example, the 

antialiasing logic may discard one or more of the first or 
second primitives or fragments. According to an example 
embodiment, the antialiasing logic may discard one of the 
first and second primitives or fragments based on compari 
sons of their coverage, depth or other information. For 
example, the graphical data having less non-occluded cover 
age may be discarded at 505. At 505, a primitive or fragment 
Such as the first or second primitive or fragment may also be 
discarded for other reasons, including, but not limited, to a 
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lack of pixel coverage area, depth, locations, or the like that 
may be used to compare the graphical data. 

At 506, a fragment associated with the information not 
discarded may be sent through a back end process and 
undergo resolve for display on a display device Such as the 
display 126 described above with respect to FIG. 1. 

In an example embodiment, other common graphical pipe 
line elements are considered and incorporated in the dynamic 
fragment coverage antialiasing implementation. These other 
elements include a logical process for handling output merg 
ing (translucency), stencil operations, and alpha-to-coverage 
conversions. In one embodiment, incorporating output merg 
ing with dynamic fragment coverage antialiasing may cause 
the logic to run additional depth and coverage comparison 
steps involving multiple Sub-fragments from the rasterizer. In 
another embodiment, stencil operations may be applied in the 
modification of rasterized fragment coverage and stencil 
updates performed on Stored fragments based on relative 
occlusions in a pixel area. Another embodiment involving 
alpha-to-coverage conversions of pixel shader alpha output to 
pixel coverage may cause the dynamic coverage antialiasing 
logic to repeat coverage comparisons after shader execution. 
Another embodiment contains a programmable logic for 
resolve, wherein the logic may either perform a direct 
weighted merging of fragments based on relative coverage, or 
a more involved merging of the fragments of a pixel and its 
neighbors in the reconstruction of data for areas in a pixel 
with no associated fragment coverage. Dynamic fragment 
coverage antialiasing may also comprise logical steps for 
compatibility and control of depth testing, depth writes, Sten 
cil testing, output color masking, output merging, alpha test 
ing, coverage masking, shading, and conservative depth. Any 
other processes that may be associated with graphical pipe 
lines may be incorporated as elements of dynamic fragment 
coverage antialiasing. 

Example Implementation 
The following description is illustrative of how dynamic 

fragment coverage antialiasing might interact with other ele 
ments in the graphical pipeline. In an embodiment, the 
dynamic fragment coverage antialiasing logic may be imple 
mented as part of the rasterizer in the graphics pipeline, with 
control over pixel shader execution, output merger (e.g. alpha 
blending) operation, and back-end updates to stored color, 
depth, and coverage information. In addition to its influence 
on straightforward rasterization, dynamic coverage antialias 
ing also has implications for translucent rendering, stencil 
processing, and alpha-to-coverage conversion of fragment 
translucency to modified coverage. 

FIGS. 6A-6D show an example implementation of 
dynamic fragment coverage antialiasing comprising depth 
and coverage information of stored fragments 601 and the 
logic that may be used to determine whether to store or 
discard an incoming fragment 602 (produced by the raster 
izer) based on the depth 602A and coverage 602B of the 
fragment relative to the stored fragments 601. According to 
example embodiments, dynamic fragment coverage anti 
aliasing may include storage for a programmable number of 
fragments and may be programmable to change the compari 
Sons that the logic makes and the parameters on which the 
logic bases the decisions to store or discard a fragment. 

Inputs to the logic may include stored fragments 601 from 
previous iterations of the logic and fragment 602 received by 
the logic from the rasterizer. In the example embodiment, the 
fragment 602 in the logic depicted at FIGS. 6A-6D may be 
processed such that its depth is calculated from its associated 
primitive at each coverage point in a pixel area. The per 
coverage-location depth values of the fragment 602 are ini 
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tially tested against the depth values associated with the 
stored fragments in locations of intersecting coverage, and 
the coverage of the fragment 602 is eliminated at all locations 
where the depth test fails. For coverage locations where the 
depth test succeeds, the rasterized depth may be interpolated 
to form an average depth value for the fragment 602. This 
average value is represented as a portion of the fragment 602 
referred to as output depth (OD) in FIGS. 6A-6D. 

Referencing the interpolated depth value, the depth com 
parison logic 620 evaluates it against the depth of the stored 
fragments 601. Coverage comparison logic 640 next evalu 
ates the output coverage of the fragment 602 against the 
coverage of the stored fragments for relative visibility. Typi 
cally, in quantifying visible coverage and comparing it 
between incoming and stored pixel fragments, areas of the 
pixel occupied by the stored fragments are taken into account 
and areas of the pixel not occupied by the stored fragments 
may be discounted. 

If the fragment 602 is nearer or equal in depth to the nearest 
of the stored fragments 601 (assuming a depth comparison 
mode of less-or-equal) but has a minority coverage, its color 
and depth are discarded and its coverage mask is used to mask 
off intersecting portions of the coverage masks of both stored 
fragments. If the fragment 602 has more than minority cov 
erage (its output coverage as compared against the stored 
coverages masked off by the output coverage), it is kept. If the 
fragment 602 is retained, its coverage mask is stored as the 
calculated coverage of the intersecting primitive and the 
uncovered pixel portions of the two stored fragment samples 
(effectively filling the dead coverage spots with the rasterized 
fragments influence). To make room for the incoming frag 
ment, the stored fragment with the lesser coverage is removed 
by having its storage overwritten with the incoming fragment. 
The coverage area for the other stored fragment is modified 
Such that its coverage has the coverage of the incoming frag 
ment masked off from it. 

If the depth comparison logic 620 is provided a fragment 
602 which has a depth value that is farther than the nearest 
stored fragment but nearer or equal in depth to the farthest 
stored fragment, its output coverage is masked off by the 
coverage of the nearer stored pixel fragment and it, in turn, 
masks its coverage off the coverage of the farther stored pixel 
fragment. The resulting coverage areas of the three fragments 
are then compared to one another by the logic 640. If the 
fragment 602 has minority coverage, its coverage is masked 
off the coverage of the farther stored pixel fragment and it is 
discarded. If the fragment 602 does not have the minority 
coverage, the two stored fragment 601 coverage areas are 
compared for minority contribution to see which one to reject. 
The minority fragment is replaced directly by the fragment 
602 and the coverage for the fragment 602 is set to its non 
occluded primitive coverage combined with the complement 
of the coverage of the evicted fragment, with the resulting 
coverage finally masked off by the coverage of the nearer 
stored fragment. If the nearer Stored fragment is the one 
replaced, the farther stored fragment's coverage is masked off 
by the fragment's 602 coverage. 

If fragment 602 is found by the depth comparison logic to 
be farther than the farthest stored pixel fragment, the fragment 
602 is discarded completely and has no effect on the cover 
ages of either stored fragments 601. 

Note that the pixel shader 612 may be executed when the 
depth and coverage comparison logic determines that a frag 
ment 602 is to be preserved in storage. The pixel shading logic 
may be reserved because of high computational cost except 
when the logic determines that particular fragment informa 
tion may have an effect on the final value of the pixel. 
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FIGS. 6A-6D present an example embodiment for the 
operation of dynamic coverage antialiasing in the context of 
opaque rendering. Another example embodiment for the pro 
cessing of translucent rendering (i.e. output merging enabled) 
involves an expansion of the opaque implementation. A frag 
ment 602 produced for translucent rendering may have its 
visible coverage area reduced according to the coverage of 
two or more stored fragments 601 for the pixel. If the inter 
secting visible coverage of the fragment with the stored frag 
ments is empty, the fragment 602 has nothing with which to 
blend and it is rejected. Otherwise, unless the fragment 602 is 
nearer or equal in depth to the second furthest stored frag 
ment, antialiasing proceeds as described for the opaque case 
but with the fragment's 602 color blended with the farthest 
stored fragment in the event that it is to be preserved. If the 
fragment 602 is nearer or equal in depth to the second furthest 
stored fragment, the restricted coverage of the fragment 602 is 
further split according to the coverage separation of the stored 
pixel fragments 601 that do not occlude the fragment 602. The 
antialiasing logic then evaluates the relative areas of the two 
or more portions of the divided fragment against the areas of 
the two or more stored fragments 601 not occluded by any 
portion of the divided fragment. Of the four or more potential 
regions, the two or more regions with the greatest coverage 
will be preserved and the two or more with the least coverage 
rejected or evicted. 
An example embodiment involving the processing of sten 

cil may cause the implementation to be extended such that the 
coverage of a fragment 602 is bifurcated according to the 
division of the destination pixel into its stored fragments 601 
based on their coverages, and each split portion applies a 
stencil test to its associated fragment in storage. The stencil 
test result may be applied in the partial rejection of a fragment 
602 by modifying its coverage area to remove locations 
which fail stencil against the destination. The dynamic cov 
erage antialiasing logic is then invoked using the modified 
coverage for the fragment 602. Updates to stencil in preserved 
fragments may be performed according to the relative occlu 
sion of a fragment 602 against Stored fragments 601. 

While example embodiments of a graphics pipeline and 
rasterizer and various methods for rendering a pixel using the 
graphics pipeline and rasterizer have been described, the 
underlying concepts may be embodied in a variety of other 
stages within the graphics pipeline or other computing com 
ponents other outside, for example, the GPU or display con 
troller that may implement the graphics pipeline. 
What is claimed: 
1. A method for rendering a pixel upon an entry of graphi 

cal information into a pixel area, the method comprising: 
receiving first graphical data of a first object in the pixel 

area, 
determining first pixel coverage area, 
wherein determining first pixel coverage area comprises: 

maintaining one or more coverage points in the pixel 
area, 

determining which coverage points maintained in the 
pixel area are covered by the first object; and 

calculating first pixel coverage area based on the cover 
age points maintained in the pixel area that are cov 
ered by the first object; 

providing the first graphical data based on the first pixel 
coverage area; 

receiving second graphical data of a second object in the 
pixel area; 

determining relative depth of the first and second objects in 
a projected view in a three dimensional graphical space; 

determining second pixel coverage area, 
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wherein determining second pixel coverage area com 

prises: 
determining which of the coverage points maintained in 

the pixel area are covered by the second object; 
culling areas of the second pixel coverage area of the 

second object that fail depth tests against the first pixel 
coverage area of the first object and overlap with the 
first pixel coverage area of the first object; and 

calculating second pixel coverage area from covered 
coverage points maintained in the pixel area; 

providing the second graphical databased on the second 
pixel coverage area; 

comparing the first and second pixel coverage areas; and 
discarding either the first graphical data or second graphi 

cal data depending upon which of the first and the second 
graphical data has a least amount of non-occluded areas 
within their respective coverage areas, 

wherein the first pixel coverage area and the second pixel 
coverage area each comprise at least some non-occluded 
area, wherein a collective depth of each of the first and 
the second graphical data is determined by calculating 
an average depth of each of a plurality of non-occluded 
coverage points within their respective coverage areas. 

2. The method of claim 1 wherein first graphical data of the 
first object comprises two or more objects, each having asso 
ciated graphical data. 

3. The method of claim 1 wherein second graphical data of 
the second object comprises two or more objects, each having 
associated graphical data. 

4. The method of claim 1 wherein a pixel shader executes 
upon a determination that graphical data is to be stored. 

5. The method of claim 1 further comprising comparing the 
first and second objects based on stencil information, or 
alpha-to-coverage or translucency or any combination 
thereof. 

6. The method of claim 1, wherein information associated 
with non-discarded graphical data is provided to a resolve 
process for obtaining data for display, and wherein data in 
neighboring pixels is provided to the resolve process when 
there are coverage points in the pixel area that do not have 
graphical data associated with them. 

7. A system for renderingapixel upon an entry of graphical 
information into a pixel area, wherein the system comprises a 
processor, wherein the processor executes computer execut 
able instructions, and wherein the computer executable 
instructions comprise instructions for: 

receiving first graphical data of a first object in the pixel 
area, 

determining first pixel coverage area, 
wherein determining first pixel coverage area comprises: 

maintaining one or more coverage points in the pixel 
area, 

determining which coverage points maintained in the 
pixel area are covered by the first object; and 

calculating first pixel coverage area based on the cover 
age points maintained in the pixel area that are cov 
ered by the first object; 

providing the first graphical data based on the first pixel 
coverage area; 

receiving second graphical data of a second object in the 
pixel area; 

determining relative depth of the first and second objects in 
a projected view in a three dimensional graphical space; 

determining second pixel coverage area, 
wherein determining second pixel coverage area com 

prises: 
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determining which of the coverage points maintained in 
the pixel area are covered by the second object; 

culling areas of the second pixel coverage area of the 
second object that fail depth tests against the first pixel 
coverage area of the first object and overlap with the 
first pixel coverage area of the first object; and 

calculating second pixel coverage area from covered 
coverage points maintained in the pixel area; 

providing the second graphical databased on the second 
pixel coverage area; 

comparing the first and second pixel coverage areas; and 
discarding either the first graphical data or second graphi 

cal data depending upon which of the first and the second 
graphical data has a least amount of non-occluded areas 
within their respective coverage areas, 

wherein the first pixel coverage area and the second pixel 
coverage area each comprise at least some non-occluded 
area, wherein a collective depth of each of the first and 
the second graphical data is determined by calculating 
an average depth of each of a plurality of non-occluded 
coverage points within their respective coverage areas. 
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8. The system of claim 7 wherein first graphical data of the 

first object comprises two or more objects, each having asso 
ciated graphical data. 

9. The system of claim 7 wherein second graphical data of 
the second object comprises two or more objects, each having 
associated graphical data. 

10. The system of claim 7 wherein a pixel shader executes 
upon a determination that graphical data is to be stored. 

11. The system of claim 7 further comprising comparing 
the first and second objects based on stencil information, or 
alpha-to-coverage or translucency or any combination 
thereof. 

12. The system of claim 7, wherein information associated 
with non-discarded graphical data is provided to a resolve 
process for obtaining data for display, and wherein data in 
neighboring pixels is provided to the resolve process when 
there are coverage points in the pixel area that do not have 
graphical data associated with them. 
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