
USOO8686999B2

(12) United States Patent (10) Patent No.: US 8,686,999 B2
BrOnder et al. (45) Date of Patent: Apr. 1, 2014

(54) DYNAMIC FRAGMENT COVERAGE 5,742,749 A * 4/1998 Foran et al. 345.426
ANTIALASING 5,760,780 A * 6/1998 Larson et al. 345,422

5,949,428 A 9, 1999 Toelle
5,977.977 A * 1 1/1999 Kajiya et al. 345,418

(75) Inventors: Matthew L. Bronder, Bellevue, WA 6,115,049 A 9, 2000 Winner et al.
(US); Joseph C. Bertolami, Seattle, WA 6,128,000 A 10/2000 Jouppi
(US); Matthew William Lee, 6,204.859 B1* 3/2001 Jouppi et al. 34.5/592
Sammamish, WA (US); Michael A. 6,285,348 B1* 9/2001 Lewis 345.614

s s 6,377,273 B1 4/2002 Lee Dougherty, Issaquah, WA (US) 6,445,392 B1 9/2002 Morein

(73) Assignee: Microsoft Corporation, Redmond, WA (Continued)
(US) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Harbinson et al. (“Real-time antialiasing of Edges and Contours of
patent is extended or adjusted under 35 Point Rendered Implicit Surfaces”, IEEE Computer Society, 5th
U.S.C. 154(b) by 1040 days. International Conf. on Computer Graphics, Imaging and Visualiza

tion, pp. 38-46, 2008).*
(21) Appl. No.: 12/428,188

(Continued)
(22) Filed: Apr. 22, 2009 Primary Examiner — Daniel Hajnik
(65) Prior Publication Data Assistant Examiner — William Beutel

US 2010/O194747 A1 Aug. 5, 2010 (74) Attorney, Agent, or Firm — Judy Yee; Micky Minhas

O O (57) ABSTRACT
Related U.S. Application Data -

The following discloses antialiasing systems and methods.
(60) Provisional application No. 61/149,326, filed on Feb. Information about one or more fragments or primitives in a

2, 2009. pixel area may be dynamically stored. The stored information
may include, for example, depth, color, location and cover

(51) Int. Cl. age. The coverage and depth information may be tracked at a
G06T I5/40 (2011.01) higher frequency across the pixel than the number of frag

(52) U.S. Cl. ments or primitives. Fragments or primitives that enter into a
USPC .. 345/422 pixel area may be compared with fragments or primitives that

(58) Field of Classification Search have been stored. The comparisons may be based on depth
None and coverage. Either the incoming fragment or the stored
See application file for complete search history. fragment may be deleted based on the comparisons. Informa

tion associated with fragments that are preserved may be
(56) References Cited sampled at any location associated with their coverage area of

U.S. PATENT DOCUMENTS

4,918.626 A * 4/1990 Watkins et al. 345/421
5,363.475 A * 1 1/1994 Baker et al. 345,422
5,544.294 A * 8/1996 Cho et al. 345,441

Rasterizer 400
Polygon depth and
pixel coverag

402
ynamic fragment coverage

antialiasing logic

a pixel. Fragments or primitives that are not discarded may be
preserved for a final resolve process, which may incorporate
information available from neighboring pixel areas.

12 Claims, 9 Drawing Sheets

403
? Polygon pixel 94,

TL =

Pixel Shade

discarded
Fragments

409

US 8,686.999 B2
Page 2

(56)

6,774,910
6,963,346
7,068,272
7,095,421
7,372.471
7,375,727
7,616,200
8,044,956
8,044,971

References Cited

U.S. PATENT DOCUMENTS

8, 2004
11/2005
6, 2006
8, 2006
5/2008
5/2008
11/2009
10, 2011
10, 2011

Lewis
Lewis 345,611
Voorhies et al. 345,422
Vijayakumar et al. 345,613
Hutchins
Greene
Heinrich et al. 345,422
Kilgard 345.426
Nystad 345.614

OTHER PUBLICATIONS

Beaudoin, P. et al., “Compressed Multisampling for Efficient Hard
ware Edge Antialiasing”, 2004, http://www.iro.umontreal.ca, 8
pageS.
Nvidia, Technical Report, “Coverage Sampled Antialiasing”, Oct.
30, 2006, http://developer.downloadinvidia.com, 12 pages.
Wand, M. et al., “The Randomized Z-Buffer Algorithm: Interactive
Rendering of Highly Complex Scenes”. Siggraph Conference Pro
ceedings, 2001, 10 pages.

* cited by examiner

U.S. Patent Apr. 1, 2014 Sheet 2 of 9 US 8,686,999 B2

Game Console 200

VIDEO
ENCODERf

CPU Fuses 207 VDEO CODEC AW
CORE 202 GRAPHICS 214

UNT
E LEVEL 1 EVE 2

CACHE 208 CACHE 205 209

CENTRAL PROCESSING UNIT 201

MEMORY SYSTEM POWER
SUPPY MODULE CONTROLLER

236 210

SYSTEM
f0 MANAGEMENT

CONTROLLER CONTROLLER
220 222

USB FRONT PANEL USB
CONTROLLER /O CONTROLLER

226 SUBASSEMBLY

WIRELESS
ADAPTER

248

CONTROLLER
242(1)

U.S. Patent

Input to the
graphical pipeline

301

300
Graphics
pipeline

Apr. 1, 2014 Sheet 3 of 9

Model Space
302

World Space
303

View Space
304

Projection Space
305

Clip Space and
Clipping
306

Rasterizer
400

FIG. 3

US 8,686,999 B2

Output for
graphical

display 310

U.S. Patent Apr. 1, 2014 Sheet 4 of 9 US 8,686,999 B2

FIG 4

Rasterizer 400

Polygon depth and
pixel Coverag SO1

E
Pixei Shader

402 403
Dynamic fragment coverage 404

antialiasing logic . Polygon pixel color

Discarded
Fragments)

U.S. Patent

5O1
Receive First information

Apr. 1, 2014 Sheet 5 Of 9

503
Compare First and Second

information

504
Store information

505
Discard information

506
Back end processes

Visual Display

FIG. 5

502
Receive Second

Information

US 8,686,999 B2

U.S. Patent Apr. 1, 2014 Sheet 6 of 9 US 8,686,999 B2

F.G. 6 -
F.G. 6A

visible sub-pixel Samples (RD compared iter SAS o SE
Mask (RM) Sl). Interpolate output depth from

visible sub-pixel sample depths (RD
according to Output coverage mask),

covers n pixel samples Construct Output coverage mask from

Rasterized
602A / Depth (RD)

602

630

Associate input and
output sample 0 with
stored pixel fragment 0,
associate sample 1 with
stored fragment l:
SCO is Stored Color 0
SC is Stored Color
SDO is Stored Depth 0
SD1 is Stored Depth 1
SO is Stored ask 0
Sil is Stored ask 1.

Yes

Stored Depth 0 <=
Stored Depth Yes

No

-

U.S. Patent Apr. 1, 2014 Sheet 7 Of 9 US 8,686,999 B2

FIG. 6B

Output
Coverage
Mask (OM)

Output
Depth (OD)

Write OC to SC
Write OD to SD
Define as SMO
Write (SMO & NOM) to SMO
Write (OM I (TN & NSM))
to Sl

WD = (SOS) & O
V = SMO & NON)
W2 = (SM & NON

Write OC to SCO
Write OD to SDO
Write (OM (NSMO &
NSM) to SMO
Write (SM1 & NOM) to SM1

Discard the ouput
Write (SMO & NOM) to SMO
Write (SM1 & NOM) to SM1

WO = SEl & (ON & MSNO)
W = SO)
W2 = SM1 & m(O & NSXO)

U.S. Patent Apr. 1, 2014 Sheet 8 of 9 US 8,686,999 B2

Associate input and
Output sample 0 with
stored pixel fragment 1,
associate sample 1 with
stored fragment 0.
SCO is Stored Color
SC is Stored Color 0
SDO is Stored Depth 1
SD1 is Stored Depth 0
SMO is Stored Mask 1
SM1 is Stored ask 0

Stored
Coverage
Mask 0

Stored
Coverage
Mask 1

Back-end storage
Notations:

is used to indicate an operation which counts the
G. number of bits Set in a mask

FIG. 6C & is used to indicate a bitwise AND operation
is used to indicate a bitwise OR operation

N is used to indicate a bitwise complement operation

U.S. Patent Apr. 1, 2014 Sheet 9 Of 9 US 8,686,999 B2

Write OC to SC
Write OD to SD1
rite (so (or ISM).
to Sl

Write OC to SCO
Write OD to SDO
Write (NSMO & (OMINS)
to SO
Write (SM1 & mOM) to SM1 Discard the Output

Write (SM1 & mOM) to SMl

US 8,686,999 B2
1.

DYNAMIC FRAGMENT COVERAGE
ANTIALASING

PRIORITY CLAIM

The present application claims benefit under 35 U.S.C.
S119(e) of provisional U.S. patent application No. 61/149.
326 filed Feb. 2, 2009. The disclosure of the above-referenced
provisional application is incorporated herein by reference.

BACKGROUND

Typically, computer graphics are generated onscreen using
a graphics pipeline. For example, information including
attached vertices may be input from a processor into the
pipeline. Such information may be converted into a three
dimensional world space comprised of primitives that may be
transformed into a two dimensional image. Typically, the two
dimensional image is constructed of small objects called frag
ments. Fragments include rasterized results of processed
primitives that may be mathematically described polygons.
Fragments may include, for example, assigned values
describing their color, depth and other functions. Such frag
ments may be rendered as pixels for a two dimensional image
on a visual display or print Surface. Typically, the two dimen
sional image may be aliased or jagged when, for example,
Such fragments may be rendered. Unfortunately, to remove
Such aliasing orjaggedness, a large amount of memory and/or
bandwidth of the system rendering the primitives as pixels
may be consumed.

SUMMARY

The following discloses antialiasing systems and methods.
In one embodiment, information about one or more fragments
or primitives in a pixel area may be stored in the graphics
pipeline. The stored information associated with graphical
data may include, for example, depth, color, and location
information. The stored information may also include cover
age information including pixel coverage by the graphical
data. According to an example embodiment, the stored infor
mation may be dynamically mapped. For example, the stored
information may be associated with a location that the graphi
cal data covers, without being tied to specific points in a pixel
area. In one embodiment, the coverage information may be
tracked at a higher frequency across the pixel than other
information about the fragment or primitive. For example, a
specified number of fragments may be stored per pixel area,
however the number of coverage points in a pixel area that
may track a fragment and be associated with a fragment when
a fragment covers the pixel area may be greater by any factor,
for example, 2x, or 2.5.x, or any other rational number. Cov
erage may also be determined using analytical methods. For
example, coverage may also be determined by parametric
descriptions of polygon-pixel interception with processing
algorithms, or triangle lists defining coverage Volumes.

According to an example embodiment, first graphical data
previously stored for a pixel may be compared with informa
tion about second graphical data that enters a pixel area. For
example, information about second graphical data that enters
a pixel area may be received and pixel coverage data may be
associated with Such graphical data. Features of the second
graphical data that enters a pixel, including depth, coverage or
any other feature may be compared with coverage informa
tion or other information associated with first graphical data
that may be previously stored in the pixel. The first graphical
data or the second graphical data that enters a pixel area may

10

15

25

30

35

40

45

50

55

60

65

2
then be deleted based on the comparisons. If the first graphi
cal data is deleted based on the comparisons, the second
graphical data may be stored in its place. First graphical data
that is not discarded may also be updated based on the com
parisons. As used herein, first graphical data may imply one or
more primitives or fragments, and second graphical data may
also imply one or more primitives or fragments.
The preserved graphical data associated with a pixel area

may then be written on a graphical display. In one embodi
ment, the preserved graphical data associated with the pixel
area may be written on the graphical display after a resolve
process. The resolve process may use relative coverage areas
of the graphical data in a pixel for a weighted merging of the
data in one embodiment. Additionally, the resolve process
may take into account information in neighboring pixels
when, for example, coverage points in a pixel area do not
include graphical data associated therewith.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example embodiment of an open com
puting System.

FIG. 2 depicts an example embodiment of a closed com
puting System.

FIG.3 depicts a block diagram of an example embodiment
of a graphics pipeline.

FIG. 4 depicts a block diagram of an example embodiment
of a system that may include dynamic fragment coverage
antialiasing logic.

FIG. 5 depicts a flow diagram of an example embodiment
of a method of dynamic fragment coverage antialiasing.

FIGS. 6A-6D depict a flow diagram of an example embodi
ment of logic for dynamic fragment coverage antialiasing.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

In the present application, graphical data in the graphical
pipeline from the point of entry until the rasterization process
is known as “primitives'. Data in the graphical pipeline that
may be used for creating a graphical output from the raster
ization process until the end of the graphical pipeline is
known as “fragments'. Fragments and primitives are collec
tively called “graphical data”.

FIG. 1 depicts a block diagram of an example open com
puting environment in which dynamic fragment coverage
antialiasing may be executed. For purposes of simplicity, not
all components or interconnectivity are shown and some
components have been merged into other components shown
in FIG. 1. Although categorization may vary in degree from
one system to the next, open computing environments are
general purpose computing environments that may execute
virtually any program while closed systems tend to be more
specialized with one or more specific purpose(s) designed to
execute, perhaps in addition to general programs, privileged
programs specifically created for them. Examples of closed
systems may include, for example, cable set top boxes, Smart
phones, gaming consoles and cellular telephones. Although
not required, various aspects of dynamic fragment coverage
antialiasing that may be executed may be described in the
general context of computer executable instructions, such as
program modules, being executed by a personal computer,
client workstation, server or other computing system. Gener
ally, program modules include routines, programs, objects,
components, data structures and the like that perform particu
lar tasks or implement particular abstract data types. More
over, implementation of dynamic fragment coverage anti

US 8,686,999 B2
3

aliasing may be practiced with other computer system
configurations, including hand held devices, multiprocessor
systems, microprocessor based or programmable consumer
electronics, network PCs, minicomputers, mainframe com
puters, or the like. Further, dynamic fragment coverage anti
aliasing may be practiced in distributed computing environ
ments where tasks are performed by remote processing
devices that are linked through a communications network. In
a distributed computing environment, program modules may
be located in both local and remote memory storage devices.
A computer system may be roughly divided into three

component groups: the hardware component, the hardware/
Software interface system component, and the application
programs component (also referred to as the “user compo
nent' or “software component'). In various embodiments of
a computer system the hardware component may comprise
central processing unit (CPU) 120, memory (both ROM 111
and RAM 113), various input/output (I/O) devices such as
keyboard 152, mouse 151, display 126, and/or printer (not
shown), among other components. To some degree, initial
ization firmware such as basic input/output system (BIOS)
112 may be considered part of the hardware component as
well as part of the hardware/software interface system com
ponent. The hardware component comprises the basic physi
cal infrastructure for the computer system.
The application programs component comprises various

Software programs including but not limited to compilers,
database systems, word processors, business programs, video
games, and so forth. Application programs provide the means
by which computer resources are utilized to solve problems,
provide Solutions, and process data for various users (ma
chines, other computer systems, and/or end-users).
The hardware/software interface system component com

prises (and, in Some embodiments, may solely consist of) an
operating system that itself comprises, in most cases, a shell
and a kernel. As previously noted, firmware such as BIOS
may also be considered part of the hardware/software inter
face system. An "operating system” (OS) is a special program
that acts as an intermediary between application programs
and computer hardware. The hardware/software interface
system component may also comprise a virtual machine man
ager (VMM), a Common Language Runtime (CLR) or its
functional equivalent, a Java Virtual Machine (JVM) or its
functional equivalent, or other Such software components in
the place of or in addition to the operating system in a com
puter system. In addition to performing initialization tasks,
depending on the system BIOS may also provide some level
of interface between hardware and software that may not be
performed by the operating system. A purpose of a hardware/
Software interface system is to provide an environment in
which a user may execute application programs.

The hardware/software interface system may be generally
loaded into a computer system during initialization and there
after manages all of the application programs in the computer
system. The application programs interact with the hardware/
Software interface system by requesting services via an appli
cation program interface (API). Some application programs
enable end-users to interact with the hardware/software inter
face system via a user interface such as a command language
or a graphical user interface (GUI).
A hardware/software interface system traditionally per

forms a variety of services for applications. In a multitasking
hardware/software interface system where multiple programs
may be running at the same time, the hardware/software
interface system determines which applications should run in
what order and how much time should be allowed for each
application before Switching to another application for a turn.

10

15

25

30

35

40

45

50

55

60

65

4
The hardware/software interface system also manages the
sharing of internal memory among multiple applications, and
handles input and output to and from attached hardware
devices such as hard disks, printers, and dial-up ports. The
hardware/software interface system also sends messages to
each application (and, in certain case, to the end-user) regard
ing the status of operations and any errors that may have
occurred. The hardware/software interface system may also
offload the management of batch jobs (e.g., printing) so that
the initiating application may be freed from this work and
may resume other processing and/or operations. On comput
ers that may provide parallel processing, a hardware/software
interface system also manages dividing a program So that it
runs on more than one processor at a time.
A hardware/software interface system shell (referred to as

a “shell’) is an interactive end-user interface to a hardware/
software interface system. (A shell may also be referred to as
a “command interpreter” or, in an operating system, as an
“operating system shell’). A shell is the outer layer of a
hardware/software interface system that is directly accessible
by application programs and/or end-users. In contrast to a
shell, a kernel may be a hardware/software interface systems
innermost layer that interacts directly with the hardware com
ponents or their device drivers and/or the BIOS.
As shown in FIG. 1, an example open computing environ

ment 100 in which in which dynamic fragment coverage
antialiasing may be executed may include a conventional
computing device 105 or the like, including processing unit
120, system memory 110, and system bus 165 that couples
various system components including system memory 110 to
processing unit 120. Computing device 105 may be any vari
ety of computing device such as, but not limited to, a personal
computer, laptop, hand-held computer, cellular phone or
server. Processing unit 120 may comprise, for example, a
CPU, Northbridge and Southbridge chipset with their well
known functionality, among other components. System bus
165 may be any one or all of several types of bus structures
including a memory bus, peripheral bus and a local bus using
any of a variety of bus architectures. System memory 110
includes read only memory (ROM) 111 and random access
memory (RAM) 113. Basic input/output system (BIOS) 112,
containing basic routines that help to transfer information
between elements within the computing device 105, such as
during initialization, may be stored in ROM 111. Among
other functionality such as a power on self-test or POST as it
is commonly known, BIOS 112 may include a computer
initialization program Such as a bootloader stage to load other
initialization stages or load and turn over control to operating
system 114. While the only BIOS shown is BIOS 112, some
hardware devices such as optical drives may have their own
BIOS or other necessary initialization firmware, which may
be executed in addition to BIOS 112 during initialization of
computing device 105. ROM 111 may include embedded
memory, e.g., within the CPU of processing unit 120, and/or
one or more discrete non-volatile memory devices, including
flash memory.
Computing device 105 may further include hard disk drive

136 for reading from and writing thereto operating system
114, application programs 115, other programs 116, program
data 117 or other information, magnetic disk drive 141 (e.g.
floppy disk drive) for reading from or writing to removable
storage 142 or other magnetic disk operating system 114,
application programs 115, other programs 116, program data
117 or other information, and optical disk drive 146 for read
ing from or writing to removable optical disk 147. Such as a
CDROM or other optical media, operating system 114, appli
cation programs 115, other programs 116, program data 117

US 8,686,999 B2
5

or other information. Hard disk drive 136, magnetic disk drive
141, and optical disk drive 146 are connected to system bus
165 by a hard disk drive interface 135, magnetic disk drive
interface 140, and optical disk drive interface 145, respec
tively. The example environment of FIG. 1 also includes
universal serial bus (USB) controller 130, USB 131 and USB
device 132 (e.g. removable USB flash memory or hard disk
drive). USB device 132 may be coupled to system bus 165 via
universal Serial bus 131 and USB controller 130. The drives
and their associated computer readable media provide non
Volatile storage of computer executable instructions, data
structures, program modules and other data for computing
device 105. Similarly, USB device 132 may also comprise
removable non-volatile memory such as a USB flash or hard
drive, among a host of other devices. Although the example
environment described herein employs hard disk 136, remov
able magnetic disk 142, removable optical disk 147 and
removable USB device 132, it is well known that a computing
system may employ many other types offixed and removable,
Volatile and non-volatile computer readable media. Likewise,
the example environment may also include many types of
monitoring devices Such as heat sensors and security or fire
alarm systems, and other sources of information.

Data and any number of program modules comprising
computer-executable instructions, such as BIOS 112 or other
initialization program, operating system 114, application
programs 115, other program modules 116 and data Such as
program data 117, may be stored on any one or more com
puter-readable mediums such as hard disk drive 136, mag
netic disk 142, optical disk 147, ROM 111 (e.g. ROM,
EEPROM, flash memories, eFuses), USB device 132, RAM
113 or any other discrete or embedded, volatile or non-vola
tile memories (not shown). A user may enter commands and
information into computing device 105 through input devices
Such as keyboard 152 and a pointing device Such as mouse
151. A wide variety of other input devices (not shown) may
include, for example, a microphone, joystick, game pad, tab
let or scanner. These and other input devices are often con
nected to processing unit 120 through a serial port interface
150 that may be coupled to system bus 165, but may be
connected by other wired or wireless interfaces. Such as a
parallel port, game port, universal serial bus (USB) or
Firewire. Display 126 or other type of display device may be
also connected to system bus 165 via an interface such as
graphics controller 125. In addition to display 126, comput
ing devices typically include other peripheral output devices,
Such as speakers and printers (not shown).
Computing device 105 may operate in a local and/or wide

area network environment using logical connections to one or
more remote computers, such as remote computer(s) 160.
Remote computer(s) 160 may be another computing device
(e.g., personal computer), a server, a router, a network PC, a
peer device, or other common network node, and typically
includes many or all of the hardware, firmware and software
elements described above relative to computing device 105.
The logical connections depicted in FIG. 1 include a local
area network (LAN) 161 and wide area network (WAN) 162
Such as the Internet. Such networking environments are com
monplace in offices, enterprise wide computer networks,
intranets and the Internet. When used in a LAN networking
environment, computing device 105 may be connected to
LAN 161 through network interface 155. When used in a
WAN networking environment, computing device 105 may
include modem 153 or other means for establishing commu
nications over WAN 162, such as the Internet. While modem
153, which may be internal or external to computer 105, is
shown connected to system bus 165 via serial port interface

10

15

25

30

35

40

45

50

55

60

65

6
150, it may be connected in a variety of other ways. In a
networked environment, program modules, or portions
thereof, may be stored in a remote memory storage device. It
will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between computer 105 and remote computer(s) 160 may
be employed.

While it may be envisioned that numerous embodiments of
dynamic fragment coverage antialiasing are particularly
well-suited for computerized systems, nothing in this docu
ment is intended to limit dynamic fragment coverage anti
aliasing to such embodiments. On the contrary, as used herein
the term "computer system’ is intended to encompass any and
all devices capable of storing and processing information
and/or capable of using the stored information to control the
behavior or execution of the device itself, regardless of
whether Such devices are electronic, mechanical, logical, or
virtual in nature.
Dynamic fragment coverage antialiasing implemented in,

for example, computer 105 may be implemented in connec
tion with hardware, firmware or software or a combination
thereof. Thus, the methods, apparatuses and systems for
dynamic fragment coverage antialiasing, or certain aspects or
portions thereof, may take the form of program code (i.e.,
instructions) and/or data embodied in tangible computer
readable media, Such discrete or embedded memories such as
hard disk drives, magnetic disks, optical disks, USB devices,
ROM memories, flash memories, eFuses or any other
machine-readable storage medium, wherein, when the pro
gram code or data may be loaded into and executed or read by
a machine. Such as computer device 105, the machine
becomes an apparatus for implementing dynamic fragment
coverage antialiasing. The program(s) may be implemented
in assembly or machine language, if desired. In any case, the
language may be a compiled or interpreted language, and
combined with hardware implementations. The methods and
apparatuses for implementing dynamic fragment coverage
antialiasing also may be practiced via communications
embodied in the form of program code that may be transmit
ted over some transmission medium, Such as over electrical
wiring or cabling, through fiber optics, or via any other form
of transmission, wherein, when the program code may be
received and loaded into and executed by a machine. Such as
an EPROM, a gate array, a programmable logic device (PLD),
a client computer, or the like. When executed by a processor,
the program code combines with the processor to provide a
unique apparatus that operates to invoke the functionality of
dynamic fragment coverage antialiasing. Additionally, any
storage techniques used in connection with dynamic frag
ment coverage antialiasing may invariably be a combination
of hardware, firmware and software.

Without limitation, FIG. 2 depicts a block diagram of an
example closed computing environment in which various
aspects of dynamic fragment coverage antialiasing may be
implemented. Closed computing devices tend to be more
specialized, or have at least one specialized purpose, relative
to general purpose computing devices. Closed systems tend
to have one or more specific purpose(s) designed to execute,
perhaps in addition to general programs, privileged programs
specifically created for them. Examples of closed systems
may include, for example, cable set top boxes, Smartphones,
gaming consoles such as Microsoft's Xbox 360 and cellular
telephones that execute one or more privileged programs. As
an example of what makes the Xbox 360 a closed computing
environment, at least in part, is that it is designed to gain
restricted access to services such as Xbox LIVE and Xbox
LIVE Marketplace located at http://www.xbox.com. Xbox,

US 8,686,999 B2
7

Xbox 360 and Xbox LIVE are registered trademarks of
Microsoft Corporation, One Microsoft Way, Redmond,
Wash. 98.052-6399. Xbox LIVE is a full spectrum online
gaming and entertainment service. Besides providing online
multiplayer gaming, through Xbox Live and Xbox LIVE
Marketplace, customers may download purchased and pro
motional content to their Xbox 360, including high definition
and standard definition television shows, movies, gaming
Videos, music videos, short feature films, video games, dash
board themes, slideshows, gamer pictures, game trailers/
demos, movies, game content Such as new maps, weapons,
levels, characters, challenges, expansions, arcade games,
demos and trailers.

FIG. 2 depicts a block diagram of an example gaming
console such as an Xbox 360. Game console 200 comprises
hardware, firmware and software. Game console 200 com
prises a computer system. Game console 200 executes game
applications and plays generic and specialized media files
(not shown). For purposes of simplicity, not all components
or interconnectivity are shown and some components have
been merged in example game console 200. Game console
200 comprises central processing unit (CPU) 201, which has
multiple CPU cores 202, 203, 204, each having embedded
cache such as level 1 (L1) cache 208. CPU 201 further com
prises level 2 (L2) cache 205, ROM (Read-Only Memory)
206 and fuses 207. CPU cores 202,203 and 204 may share L2
cache memory 205. Level 1 and Level 2 cache 208, 205
temporarily store executable instructions and/or data, thereby
improving processing speed and throughput. ROM 206 may
store firmware such as BIOS or other initialization programs
and data loaded during an initial phase or stage of a boot
process such as when game console 200 may be initially
powered on. Alternatively, or in addition, the BIOS or other
initialization programs and data loaded during one or more
initialization phases/stages may be stored in another type of
non-volatile memory such as flash (a type of EEPROM)
memory, as may be represented by System memory 243, or
fuses 207. In some embodiments, fuses 207 may be electroni
cally programmable. In some embodiments, ROM 206, fuses
207, and alternative non-volatile memory storing initializa
tion programs and/or data need not be embedded within CPU
201. However, physically locating memory devices that store
initialization programs or data in CPU 201 may offer an
added layer of security for Such information. Game console
200 may optionally be a multi-processor system. For
example, game console 200 may have three processors that
are similar or dissimilar to processor 201.
Game console 200 further comprises graphics processing

unit (GPU) 209, which may be coupled to CPU 201, and any
additional processors, by abus. GPU 209 may be also coupled
by one or more busses each to memory controller 210, I/O
(input/output) hub 218 and video codec (coder/decoder) 214.
Memory controller 210 and video codec 214 may form part of
GPU209. GPU 209, in addition to video processing function
ality, may comprise functionality commonly referred to as
Northbridge. Northbridge functionality generally comprises
a high speed memory and video hub having a memory con
troller and a video controller. In example game console 200,
both CPU 201 and I/O hub (Southbridge) 218 access main
memory 212 through Northbridge functionality in GPU 209.
Memory controller 210 facilitates access to various types of
main memory 212, which may be RAM (Random Access
Memory) or other variety of memory.

GPU. 209 and video codec 214 together form a video pro
cessing pipeline for high speed, high resolution graphics pro
cessing required by many game applications. Data may be
carried from GPU 209 to/from video codec 214 via a bi

10

15

25

30

35

40

45

50

55

60

65

8
directional bus. This video processing pipeline outputs data to
A/V (audio/video) port 240 for transmission to a television or
other video display device (not shown). Game console 200
may have its own integrated display (not shown). Not shown
is a digital to analog converter (DAC) that may be coupled
between video codec 214 and A/V port 240.
Game console 200 further comprises I/O hub 218, which

may comprise, among other functionality, functionality com
monly referred to as Southbridge. Southbridge functionality
generally performs and controls functions that are relatively
slow compared to functions performed and controlled by
Northbridge. I/O hub 218 comprises IO controller 220, sys
tem management controller 222, audio processing unit 223,
network interface controller 224, USB host controllers 226,
228 and front panel I/O subassembly 230. USB controllers
226, 228 serve as hosts for peripheral controllers 242(1),
242(2), wireless adapter 248, and memory unit 246 (e.g., flash
memory, CD/DVD ROM, hard drive, other removable
media). Network interface 224 and/or wireless adapter 248
provide access to a network (e.g., LAN, WAN or Internet) and
may be any of a wide variety of various wired or wireless
interface components including an Ethernet card, modem,
Bluetooth module, and the like.

System memory 243 may be volatile and/or non-volatile
memory, including flash memory. In some embodiments sys
tem memory 243 may store all or a portion of the initialization
program and data (e.g. Various bootloader stages) and oper
ating system that may be loaded during the initialization boot
process. In other embodiments, system memory 243 may
store application data, game saves and downloads. Media
drive 244 may comprise, for example, a DVD/CD drive, hard
drive or other fixed or removable media reader and/or writer.
Game application data may be read from and/or written to
media via media drive 244 for execution, playback, etc. by
game console 200. Media drive 244 may be connected to I/O
controller 220 via a bus, such as a Serial ATA bus or other high
speed connection (e.g., IEEE 5394). Game console 200 may
include hard disk 252, which may be used, for example, to
store all or a portion of the initialization program and data
(e.g. various boot loader stages) and operating system that
may be loaded during the initialization boot process, game
applications, game data or other types of data.

System management controller 222 provides a variety of
service functions for game console 200. Audio processing
unit 223 and audio codec 232 form a corresponding audio
processing pipeline that may provide high fidelity, 5D, Sur
round, and stereo audio processing of sounds produced by, for
example, a game application. Audio data may be carried
between audio processing unit 223 and audio codec 232 via a
communication link. The audio processing pipeline outputs
audio data to A/V port 240 for implementation by a device
having audio capabilities.

Front panel I/O subassembly 230 supports the functional
ity of various controls such as power button 250 and eject
button 252, as well as any LEDs (light emitting diodes) or
other indicators exposed on the outer Surface of game console
200. System power supply module 236 provides power to
components of game console 200 while fan 238 cools them.
CPU 201, GPU 209, memory controller 210, and various

other components within game console 200 are intercon
nected via one or more buses, including serial and parallel
buses, a memory bus, a peripheral bus, and a processor or
local bus using any of a variety of bus architectures. As
previously noted, not all buses or other connections and com
ponents are shown in FIG. 2.
When game console 200 may be powered on or rebooted,

aside from initialization, application data and/or instructions

US 8,686,999 B2
9

may be loaded from system memory 243, media drive 244,
hard disc 253 or other memory into main memory 212 and/or
caches 205, 208 and executed on CPU 201. The game appli
cation being executed may present a graphical user interface
that provides a consistent user experience when navigating to
different media types available on or to game console 200.
Instructions and/or data accessible via media drive 244, sys
tem memory 243, hard disk 253 or other memory may be
launched, played or otherwise accessed from these various
Sources to provide additional functionality to game console
2OO.
Game console 200 may be operated as a stand-alone sys

tem by connecting the system to a television or other display.
As previously noted, game console 200 may have an inte
grated display. In this stand-alone mode, game console 200
may allow one or more users to interact with the system,
watch movies, listen to music, play games and the like. Net
work interface 224 or wireless adapter 248 may allow game
console 200 to be operated as a participant in a local or wide
area network community such as Xbox LIVE.

FIG.3 depicts a block diagram of an example embodiment
of the front end of graphical pipeline 300. The graphical
pipeline 300 may be used to, for example, render an output to
provide to a rasterizer and dynamic fragment coverage anti
aliasing logic disclosed below. The dynamic fragment cover
age antialiasing logic may be used to determine the fragments
to be used for shading a pixel that may be displayed via a
display device such as the display 126 described above with
respect to FIG.1. The graphical pipeline 300 may be mapped
onto graphics acceleration hardware in, for example, the
graphics controller 125 described above with respect to FIG.
1 or the GPU 209 described above with respect to FIG. 2.
The graphical pipeline 300 may include hardware compo

nents such as servers, controllers, databases, processors, Stor
age drives, registers, cache, RAM memory chips, data buses,
or the like and/or software components such as graphics
rendering applications.

According to one embodiment, the graphical pipeline 300
may convert a three-dimensional model or scene received
from a processor into the 2D output that may be displayed via
a display device. For example, the graphical pipeline 300 may
receive input data 301 including, for example, a graphical
model from, for example, the CPU 201 described above with
respect to FIG. 2. The input data 301 may include primitives,
which may include mathematical polygons such as triangles,
hexagons, or the like that may be modeled in a modeled scene
Such as a model space 302. In an example embodiment, a
coordinate system may be established such that primitives
may be properly situated in the three-dimensional model
space 302. The model space 302 may be converted into a
three-dimensional world space 303, a view space 304, and a
projection space 305. It may be converted in discrete indi
vidual stages, a single stage resulting from a concatenation of
matrix transforms, or any combination thereof.
The graphical pipeline 300 may clip and process primitives

expressed in projection space from transformation 305 after
the primitives have been transformed from view space, and
after primitives in projection space are transformed to clip
space 306. The graphical pipeline 300 may provide the
clipped and processed contents of the three-dimensional
scene from the clipping unit into the rasterizer 400. According
to one embodiment, the transformed projected view may be
established by, for example, placing a virtual “camera' in the
three dimensional world space 303. In one embodiment, the
virtual camera may be positioned based on a location of for
example, a user that may view the two-dimensional output via

10

15

25

30

35

40

45

50

55

60

65

10
a display device. Based on the positioning of the virtual
camera, a coordinate system may be established for view and
projection space.
The graphical pipeline 300 may also provide, for example,

the clipped and processed scene data for further processing in
dynamic fragment coverage antialiasing logic that may be
used to determine which fragments should be sent to a final
resolve process for output to a display such as 126 described
above.
The graphical pipeline 300 may further rasterize the

clipped scene. For example, the graphical pipeline 300 may
include a rasterizer 400. According to an example embodi
ment, the rasterizer 400 may render primitives associated
with the clipped data from clip space 306 into fragments that
may form a graphical image 310. For example, the clipped
data from clip space 306 may be divided into a two dimen
sional array of pixels. The rasterizer 400 may then render the
primitives into pixel areas that may form a graphical image
310. The graphical image 310 may be output to a display
device such as the display 126 described above with respect to
FIG.1. According to an example embodiment, the rasterizer
400 may also provide antialiasing on the scene 306 during
rendering of the graphical image 310.

FIG. 4 depicts an example embodiment of a block diagram
of the data flow for dynamic fragment coverage antialiasing.
According to an example embodiment, as described above
the rasterizer 400 may associate information such as primi
tives 401, data from the shader 404, and fragments 405, 407
that may be in a graphical pipeline Such as the graphical
pipeline 300 with one or more pixels based on the locations of
the graphical data in a two dimensional scene. According to
an example embodiment, primitives may be rasterized into
fragments that represent one or more Sub pixel areas that may
be inside, in whole or in part, of a pixel area.
The primitives 401, data from the shader 404, and frag

ments 405, 407, and pixel data may include information or
data that may represent at least a portion of an object in three
dimensional world space Such as the three dimensional world
space 302 described above with respect to FIG. 3. For
example, as shown in FIG. 4, the information or data associ
ated with the primitives 401, data from the shader 404, and
fragments 405, 407, and pixels may include location data,
shader and lighting information, projected depth in the three
dimensional world space including, for example, the distance
to an object from the virtual camera in a projected Scene,
position, texture coordinates, normal vector, tangent vector,
binormal vector, blend weights, blend indices, tessellation
terms, material information, colors, fog information, stencil
data, translucency information, motion information, lighting
and material information (e.g. deferred rendering), or the like.

According to an example embodiment, the primitive 401
may be received by the rasterizer 400 from, for example, the
CPU 201 described in FIG. 2 and/or from previous stages in
a graphical pipeline Such as the graphical pipeline 300
described in FIG. 3. As described above the primitive 401
may include primitive information associated therewith
including, for example, location information or any other
suitable information associated with the primitive 401 as
described above.
As shown in FIG. 4, the rasterizer 400 may include

dynamic fragment coverage antialiasing logic 402. The
dynamic fragment coverage antialiasing logic 402 may
include hardware components such as servers, controllers,
databases, processors, storage drives, registers, cache, RAM
memory chips, ROM memory chips, data buses, or the like
and/or software components such as graphics rendering
applications.

US 8,686,999 B2
11

According to one embodiment, the dynamic fragment cov
erage antialiasing logic 402 may provide stored information
including, for example, fragments 405, 407 and/or or the
shader data 404. In an example embodiment, the stored infor
mation including, for example, fragments may have been
stored during previous renderings of graphical images on a
display such as display 126 described above in FIG. 1 and/or
in prior dynamic fragment coverage antialiasing logic
sequences 402. The stored graphical data may include infor
mation Such as shader and lighting information, projected
depth in space including, for example, the distance to an
object from the virtual camera in a projected Scene, position,
normal vector, tangent vector, binormal vector, colors, fog
information, stencil data, translucency information, motion
information, lighting and material information (e.g. deferred
rendering), or the like.

According to an example embodiment, the dynamic frag
ment coverage antialiasing logic 402 may include informa
tion 401, 405, and 407, and other data such as shader data 404.
The dynamic fragment coverage antialiasing logic 402 may,
for example, compare the fragments or primitives based on
the information associated therewith including, for example,
depth, coverage area within a pixel, location, intensity, or the
like. In an example embodiment, the dynamic fragment cov
erage antialiasing logic 402 may be triggered upon entry of
new information Such as a primitive or a fragment into a pixel
aca.

According to one embodiment, the dynamic fragment cov
erage antialiasing logic 402 may divide a pixel space into
coverage areas and associate the divided coverage areas with
individual points in the coverage area. These points may be
used to, for example, determine which fragments or primi
tives cover the point. In an example embodiment, when a
coverage point in a coverage area is covered by a primitive or
fragment, the larger coverage area is associated with the
fragment or primitive that covers the point. This association
may take the form of a coverage mask, where the coverage
mask may be implemented by a single binary string having a
place holder for each coverage area in a pixel that may be a 1
if a particular fragment or primitive is associated with the
coverage area, and that may be 0 if a fragment or pixel is not
associated with that area.

According to an example embodiment, a primitive or frag
ment may be evaluated for the depth of the primitive at several
points across the primitive based on its coverage of a pixel
area. Dynamic fragment coverage antialiasing logic 402 may
average the depth of the primitive or fragment at each of the
visible (i.e. non-occluded) coverage points on a pixel and
associate a single depth term with the visible portion of the
fragment that covers a pixel area.
The dynamic fragment coverage antialiasing logic 402

may also include a comparison logic 410. The comparison
logic 410 may compare the depth or coverage area of two or
more fragments or primitives in a pixel area. According to one
embodiment, if for example, two or more fragments or primi
tives occupy the same coverage point in the two dimensional
space in a pixel area, but one or more of the fragments or
primitives may be located in front of another based on the
depth in a projected view such as the projected view from the
projection space transform 305, the covered portion of the
primitive or fragment of farther depth may be discarded. The
coverage point may then be associated with the fragment or
primitive having the nearest distance to the projected view.
The comparison logic 410 may also perform additional com
parisons of the information associated with the primitives and
fragments including, for example, the coverage area of the

10

15

25

30

35

40

45

50

55

60

65

12
pixel, the intensity or color, or any other Suitable information
associated with the primitives or fragments, or both.

According to an example embodiment, each pixel area may
have two or more stored fragments or primitives associated
therewith. Additionally, each fragment or primitive may
include information Such as coverage, color, depth, translu
cency, intensity or the like associated therewith. In one
embodiment, the coverage of the pixel may be expressed
through discrete two dimensional point locations maintained
at a higher frequency than the number of fragments or primi
tives associated with each pixel. For example, the number of
coverage points may be greater than the number of fragments
stored. In one embodiment, the number of coverage points
may be a factor greater than the number of stored fragments,
where the factor may be any number greater than one. In one
embodiment, the coverage, color, depth, translucency, inten
sity and other information associated with each fragment or
primitive may be stored per fragments or primitives, and have
associated therewith, one or more coverage points in a pixel
depending on the coverage area.

According to an example embodiment, graphical data may
be stored at any location in a pixel area where the graphical
data has non-occluded pixel area coverage. Such information
or data associated with fragments or primitives as described
above may be stored in a single instance and have the cover
age of the pixel area associated with the fragment informa
tion. Thus, the stored data for each fragment may be associ
ated with a dynamic area of the pixel and its visibility is not
tied to a single fixed point location within the pixel space.

Additionally, when a primitive or fragment enters into a
pixel area, a comparison of depth may take place between it
and each of the primitives or fragments stored for the pixel. If
coverage of the entering fragment intersects with the cover
age of a stored fragment, the intersecting coverage area may
associate with the fragment that is nearer in depth to the
projected view and disassociate with the fragment that is
further away. Such visibility association may be used with
size of fragment areas in prioritizing the importance of vari
ous fragments relative to one another.
The dynamic fragment coverage antialiasing logic 402

may also rank fragments or primitives based on the compari
Sons described above. For example, the dynamic fragment
coverage antialiasing logic 402 may determine a ranking
associated with for example, which portions of a pixel area
may have more non-occluded coverage by a primitive or
fragment and, thus, which fragments should be discarded or
preserved for ultimate display. According to an example
embodiment, the rankings may be used to discard a fragment
Such as 407, or to store a fragment, or any combination
thereof.
As shown in FIG. 4, dynamic fragment coverage antialias

ing may include a pixel shader 403. The pixel shader 403 may
include hardware components such as servers, controllers,
databases, processors, storage drives, registers, cache, RAM
memory chips, ROM memory chips, data buses, or the like
and/or software components such as graphics rendering
applications such that the pixel shader 403 may determine
fragment color, modify depth, and modify coverage based on
any information associated with determination of such data in
the fragment or primitive.

According to one embodiment, the pixel shader 403 may
output shader data 404. The shader data 404 may be used in a
graphics pipeline Such as the graphical pipeline 300 to shade
a pixel that may be displayed. The shader data 404, including
for example modified coverage, may also be provided to the
dynamic fragment coverage antialiasing logic 402 for use in
reevaluating fragment visibility and priority of preservation.

US 8,686,999 B2
13

According to an example embodiment, the depths and cov
erage masks 410 associated with stored pixel fragments 405
to 407 may be used in conjunction with the depth and cover
age mask 401 associated with a primitive or fragment pro
duced by the rasterizer 400 to determine information about
the coverage of a pixel by the stored and rasterized fragments.
Such information may be used to compare, rank, cull, modify,
and store fragments or primitives. For example, as shown in
FIG. 4, the coverage mask associated with fragment 407 may
be modified to reflect the fragments updated non-occluded
visibility after comparison in the dynamic fragment coverage
antialiasing logic with one or more primitives or fragments as
described above. According to an example embodiment, the
coverage mask may be compared with any suitable informa
tion associated with the primitives and fragments mentioned
above including, for example, depth, pixel coverage area,
location, intensity, color, or the like.

Updates to the coverage masks of 410 by the dynamic
fragment coverage antialiasing logic 402 may also bring
about the eviction of, for example, the fragment 407 based on
comparisons such as depth and coverage or the like. Accord
ing to example embodiments, the depths and coverage masks
410 may be used by the dynamic fragment coverage antialias
ing logic to modify coverage of fragments or primitives.
Modification of coverage alters the relative areas occupied by
the fragments inapixel and may thereby effect a discarding of
the primitives or fragments of less importance. Modification
may also result in the storage of rasterized fragments deter
mined to have greater importance. In one embodiment, the
dynamic fragment coverage antialiasing process may be pro
vided information about the depths and coverage masks 410
including, for example, the fragments 405, 407 such that the
antialiasing logic 402 may use the information to determine
which fragments or primitives may be discarded and when a
primitive fragment produced by the rasterizer 400 may be
preserved.

According to an example embodiment, dynamically
mapped primitive or fragment information may be associated
with a portion of a pixel, where the portion of the pixel may
change in area and location. In one embodiment, the process
for dynamically mapping location and area may involve plac
ing a grid or asymmetrical pattern of coverage points in a
pixel area that may be associated with one or more primitives
or fragments when they are covered by each primitive or
fragment. As a scene changes and another primitive or frag
ment may be introduced into a pixel area, the coverage points
in the pixel area with which the introduced primitive or frag
ment intersect, and the occlusion or non-occlusion of the
primitive at those points with respect to fragments previously
introduced into the pixel area, may update the coverage infor
mation for both the introduced and previous fragments to
associate coverage locations with stored fragment informa
tion. Thus, in an example embodiment, dynamically mapping
location may involve updating the location of the coverage
with the other data associated with each fragment or primitive
each time a primitive or fragment enters a pixel area.
As described above, the pixel shader 403 may include a

software or hardware module that may be used to shade pixel
fragments rendered in a graphical pipeline Such as the graphi
cal pipeline 300 together to determine information about a
pixel such as color, intensity, or the like. The pixel shader 403,
or alternatively a dedicated resolve processing logic unit, may
also merge pixel fragments together to form a final pixel value
for display, possibly using information from neighboring pix
els, primitives or fragments or any other available informa
tion. Thus, in an example embodiment, the pixel shader 403
may combine fragment information, including color, depth,

10

15

25

30

35

40

45

50

55

60

65

14
intensity, coverage, or any other information associated with
the fragments of a pixel, its neighbors, or any combination
thereof.

FIG.5 depicts a flow diagram of an example method 500 of
dynamic fragment coverage antialiasing. The example
method 500 may be implemented using, for example, the
dynamic fragment coverage antialiasing logic 402 described
above in FIG. 4. At 501, first information associated with one
or more first primitives or fragments may be received by, for
example, antialiasing logic Such as the dynamic fragment
coverage antialiasing logic 402 described above with respect
to FIG. 4. The antialiasing logic may be included in, for
example, a rasterizer such as the rasterizer 400 that may
render a two-dimensional output in a graphics pipeline Such
as the graphical pipeline 300. According to an example
embodiment, the first information of the first primitives or
fragments may have been previously analyzed by the
dynamic fragment coverage antialiasing logic and stored.
Such first information may have been used in previous ren
dering of a graphical data by the dynamic fragment coverage
antialiasing logic. The first information may include a set of
one or more fragments or primitives that may have been
previously analyzed and stored.
At 502, second information of a second primitive or frag

ment may be received by, for example, the dynamic fragment
coverage antialiasing logic. According to one embodiment,
the second information may be received upon entry of a
second dynamically mapped primitive or fragment into a
pixel area. The second information may also include a set of
one or more fragments or primitives that may enter a pixel
aca.

At 503, the depth and coverage of the first and second
fragments or primitives may be compared. For example, the
antialiasing logic may include a comparison logic Such as the
comparison logic 402 described above with respect to FIG. 4.
In one embodiment, the first and second fragments or primi
tives may be compared based on their relative depths in the
pixel area and their coverage of the pixel using, for example,
the comparison logic. Comparisons of any other information
included in the first and second primitive information of the
first and second primitives, as described above with respect to
FIG.4, may also be performed by, for example, the compari
son logic at 503.
At 504, the first or second information may be stored. For

example, the antialiasing logic may store the first or second
primitives or fragments based on, for example, the compari
sons at 503. For example, the first and second primitives or
fragments may be compared according to their coverage area
determined by, for example, a comparison of the first and
second graphical data at 503. The first and second primitives
or fragments may also be compared based on any combina
tion of information associated with them as described above.

First or second information stored at 504 may be used in
later implementations of dynamic fragment coverage anti
aliasing. The stored information may be received by the
dynamic coverage antialiasing logic as the first or second
information in 501 and 502.
At 505, graphical data may be discarded. For example, the

antialiasing logic may discard one or more of the first or
second primitives or fragments. According to an example
embodiment, the antialiasing logic may discard one of the
first and second primitives or fragments based on compari
sons of their coverage, depth or other information. For
example, the graphical data having less non-occluded cover
age may be discarded at 505. At 505, a primitive or fragment
Such as the first or second primitive or fragment may also be
discarded for other reasons, including, but not limited, to a

US 8,686,999 B2
15

lack of pixel coverage area, depth, locations, or the like that
may be used to compare the graphical data.

At 506, a fragment associated with the information not
discarded may be sent through a back end process and
undergo resolve for display on a display device Such as the
display 126 described above with respect to FIG. 1.

In an example embodiment, other common graphical pipe
line elements are considered and incorporated in the dynamic
fragment coverage antialiasing implementation. These other
elements include a logical process for handling output merg
ing (translucency), stencil operations, and alpha-to-coverage
conversions. In one embodiment, incorporating output merg
ing with dynamic fragment coverage antialiasing may cause
the logic to run additional depth and coverage comparison
steps involving multiple Sub-fragments from the rasterizer. In
another embodiment, stencil operations may be applied in the
modification of rasterized fragment coverage and stencil
updates performed on Stored fragments based on relative
occlusions in a pixel area. Another embodiment involving
alpha-to-coverage conversions of pixel shader alpha output to
pixel coverage may cause the dynamic coverage antialiasing
logic to repeat coverage comparisons after shader execution.
Another embodiment contains a programmable logic for
resolve, wherein the logic may either perform a direct
weighted merging of fragments based on relative coverage, or
a more involved merging of the fragments of a pixel and its
neighbors in the reconstruction of data for areas in a pixel
with no associated fragment coverage. Dynamic fragment
coverage antialiasing may also comprise logical steps for
compatibility and control of depth testing, depth writes, Sten
cil testing, output color masking, output merging, alpha test
ing, coverage masking, shading, and conservative depth. Any
other processes that may be associated with graphical pipe
lines may be incorporated as elements of dynamic fragment
coverage antialiasing.

Example Implementation
The following description is illustrative of how dynamic

fragment coverage antialiasing might interact with other ele
ments in the graphical pipeline. In an embodiment, the
dynamic fragment coverage antialiasing logic may be imple
mented as part of the rasterizer in the graphics pipeline, with
control over pixel shader execution, output merger (e.g. alpha
blending) operation, and back-end updates to stored color,
depth, and coverage information. In addition to its influence
on straightforward rasterization, dynamic coverage antialias
ing also has implications for translucent rendering, stencil
processing, and alpha-to-coverage conversion of fragment
translucency to modified coverage.

FIGS. 6A-6D show an example implementation of
dynamic fragment coverage antialiasing comprising depth
and coverage information of stored fragments 601 and the
logic that may be used to determine whether to store or
discard an incoming fragment 602 (produced by the raster
izer) based on the depth 602A and coverage 602B of the
fragment relative to the stored fragments 601. According to
example embodiments, dynamic fragment coverage anti
aliasing may include storage for a programmable number of
fragments and may be programmable to change the compari
Sons that the logic makes and the parameters on which the
logic bases the decisions to store or discard a fragment.

Inputs to the logic may include stored fragments 601 from
previous iterations of the logic and fragment 602 received by
the logic from the rasterizer. In the example embodiment, the
fragment 602 in the logic depicted at FIGS. 6A-6D may be
processed such that its depth is calculated from its associated
primitive at each coverage point in a pixel area. The per
coverage-location depth values of the fragment 602 are ini

5

10

15

25

30

35

40

45

50

55

60

65

16
tially tested against the depth values associated with the
stored fragments in locations of intersecting coverage, and
the coverage of the fragment 602 is eliminated at all locations
where the depth test fails. For coverage locations where the
depth test succeeds, the rasterized depth may be interpolated
to form an average depth value for the fragment 602. This
average value is represented as a portion of the fragment 602
referred to as output depth (OD) in FIGS. 6A-6D.

Referencing the interpolated depth value, the depth com
parison logic 620 evaluates it against the depth of the stored
fragments 601. Coverage comparison logic 640 next evalu
ates the output coverage of the fragment 602 against the
coverage of the stored fragments for relative visibility. Typi
cally, in quantifying visible coverage and comparing it
between incoming and stored pixel fragments, areas of the
pixel occupied by the stored fragments are taken into account
and areas of the pixel not occupied by the stored fragments
may be discounted.

If the fragment 602 is nearer or equal in depth to the nearest
of the stored fragments 601 (assuming a depth comparison
mode of less-or-equal) but has a minority coverage, its color
and depth are discarded and its coverage mask is used to mask
off intersecting portions of the coverage masks of both stored
fragments. If the fragment 602 has more than minority cov
erage (its output coverage as compared against the stored
coverages masked off by the output coverage), it is kept. If the
fragment 602 is retained, its coverage mask is stored as the
calculated coverage of the intersecting primitive and the
uncovered pixel portions of the two stored fragment samples
(effectively filling the dead coverage spots with the rasterized
fragments influence). To make room for the incoming frag
ment, the stored fragment with the lesser coverage is removed
by having its storage overwritten with the incoming fragment.
The coverage area for the other stored fragment is modified
Such that its coverage has the coverage of the incoming frag
ment masked off from it.

If the depth comparison logic 620 is provided a fragment
602 which has a depth value that is farther than the nearest
stored fragment but nearer or equal in depth to the farthest
stored fragment, its output coverage is masked off by the
coverage of the nearer stored pixel fragment and it, in turn,
masks its coverage off the coverage of the farther stored pixel
fragment. The resulting coverage areas of the three fragments
are then compared to one another by the logic 640. If the
fragment 602 has minority coverage, its coverage is masked
off the coverage of the farther stored pixel fragment and it is
discarded. If the fragment 602 does not have the minority
coverage, the two stored fragment 601 coverage areas are
compared for minority contribution to see which one to reject.
The minority fragment is replaced directly by the fragment
602 and the coverage for the fragment 602 is set to its non
occluded primitive coverage combined with the complement
of the coverage of the evicted fragment, with the resulting
coverage finally masked off by the coverage of the nearer
stored fragment. If the nearer Stored fragment is the one
replaced, the farther stored fragment's coverage is masked off
by the fragment's 602 coverage.

If fragment 602 is found by the depth comparison logic to
be farther than the farthest stored pixel fragment, the fragment
602 is discarded completely and has no effect on the cover
ages of either stored fragments 601.

Note that the pixel shader 612 may be executed when the
depth and coverage comparison logic determines that a frag
ment 602 is to be preserved in storage. The pixel shading logic
may be reserved because of high computational cost except
when the logic determines that particular fragment informa
tion may have an effect on the final value of the pixel.

US 8,686,999 B2
17

FIGS. 6A-6D present an example embodiment for the
operation of dynamic coverage antialiasing in the context of
opaque rendering. Another example embodiment for the pro
cessing of translucent rendering (i.e. output merging enabled)
involves an expansion of the opaque implementation. A frag
ment 602 produced for translucent rendering may have its
visible coverage area reduced according to the coverage of
two or more stored fragments 601 for the pixel. If the inter
secting visible coverage of the fragment with the stored frag
ments is empty, the fragment 602 has nothing with which to
blend and it is rejected. Otherwise, unless the fragment 602 is
nearer or equal in depth to the second furthest stored frag
ment, antialiasing proceeds as described for the opaque case
but with the fragment's 602 color blended with the farthest
stored fragment in the event that it is to be preserved. If the
fragment 602 is nearer or equal in depth to the second furthest
stored fragment, the restricted coverage of the fragment 602 is
further split according to the coverage separation of the stored
pixel fragments 601 that do not occlude the fragment 602. The
antialiasing logic then evaluates the relative areas of the two
or more portions of the divided fragment against the areas of
the two or more stored fragments 601 not occluded by any
portion of the divided fragment. Of the four or more potential
regions, the two or more regions with the greatest coverage
will be preserved and the two or more with the least coverage
rejected or evicted.
An example embodiment involving the processing of sten

cil may cause the implementation to be extended such that the
coverage of a fragment 602 is bifurcated according to the
division of the destination pixel into its stored fragments 601
based on their coverages, and each split portion applies a
stencil test to its associated fragment in storage. The stencil
test result may be applied in the partial rejection of a fragment
602 by modifying its coverage area to remove locations
which fail stencil against the destination. The dynamic cov
erage antialiasing logic is then invoked using the modified
coverage for the fragment 602. Updates to stencil in preserved
fragments may be performed according to the relative occlu
sion of a fragment 602 against Stored fragments 601.

While example embodiments of a graphics pipeline and
rasterizer and various methods for rendering a pixel using the
graphics pipeline and rasterizer have been described, the
underlying concepts may be embodied in a variety of other
stages within the graphics pipeline or other computing com
ponents other outside, for example, the GPU or display con
troller that may implement the graphics pipeline.
What is claimed:
1. A method for rendering a pixel upon an entry of graphi

cal information into a pixel area, the method comprising:
receiving first graphical data of a first object in the pixel

area,
determining first pixel coverage area,
wherein determining first pixel coverage area comprises:

maintaining one or more coverage points in the pixel
area,

determining which coverage points maintained in the
pixel area are covered by the first object; and

calculating first pixel coverage area based on the cover
age points maintained in the pixel area that are cov
ered by the first object;

providing the first graphical data based on the first pixel
coverage area;

receiving second graphical data of a second object in the
pixel area;

determining relative depth of the first and second objects in
a projected view in a three dimensional graphical space;

determining second pixel coverage area,

10

15

25

30

35

40

45

50

55

60

65

18
wherein determining second pixel coverage area com

prises:
determining which of the coverage points maintained in

the pixel area are covered by the second object;
culling areas of the second pixel coverage area of the

second object that fail depth tests against the first pixel
coverage area of the first object and overlap with the
first pixel coverage area of the first object; and

calculating second pixel coverage area from covered
coverage points maintained in the pixel area;

providing the second graphical databased on the second
pixel coverage area;

comparing the first and second pixel coverage areas; and
discarding either the first graphical data or second graphi

cal data depending upon which of the first and the second
graphical data has a least amount of non-occluded areas
within their respective coverage areas,

wherein the first pixel coverage area and the second pixel
coverage area each comprise at least some non-occluded
area, wherein a collective depth of each of the first and
the second graphical data is determined by calculating
an average depth of each of a plurality of non-occluded
coverage points within their respective coverage areas.

2. The method of claim 1 wherein first graphical data of the
first object comprises two or more objects, each having asso
ciated graphical data.

3. The method of claim 1 wherein second graphical data of
the second object comprises two or more objects, each having
associated graphical data.

4. The method of claim 1 wherein a pixel shader executes
upon a determination that graphical data is to be stored.

5. The method of claim 1 further comprising comparing the
first and second objects based on stencil information, or
alpha-to-coverage or translucency or any combination
thereof.

6. The method of claim 1, wherein information associated
with non-discarded graphical data is provided to a resolve
process for obtaining data for display, and wherein data in
neighboring pixels is provided to the resolve process when
there are coverage points in the pixel area that do not have
graphical data associated with them.

7. A system for renderingapixel upon an entry of graphical
information into a pixel area, wherein the system comprises a
processor, wherein the processor executes computer execut
able instructions, and wherein the computer executable
instructions comprise instructions for:

receiving first graphical data of a first object in the pixel
area,

determining first pixel coverage area,
wherein determining first pixel coverage area comprises:

maintaining one or more coverage points in the pixel
area,

determining which coverage points maintained in the
pixel area are covered by the first object; and

calculating first pixel coverage area based on the cover
age points maintained in the pixel area that are cov
ered by the first object;

providing the first graphical data based on the first pixel
coverage area;

receiving second graphical data of a second object in the
pixel area;

determining relative depth of the first and second objects in
a projected view in a three dimensional graphical space;

determining second pixel coverage area,
wherein determining second pixel coverage area com

prises:

US 8,686,999 B2
19

determining which of the coverage points maintained in
the pixel area are covered by the second object;

culling areas of the second pixel coverage area of the
second object that fail depth tests against the first pixel
coverage area of the first object and overlap with the
first pixel coverage area of the first object; and

calculating second pixel coverage area from covered
coverage points maintained in the pixel area;

providing the second graphical databased on the second
pixel coverage area;

comparing the first and second pixel coverage areas; and
discarding either the first graphical data or second graphi

cal data depending upon which of the first and the second
graphical data has a least amount of non-occluded areas
within their respective coverage areas,

wherein the first pixel coverage area and the second pixel
coverage area each comprise at least some non-occluded
area, wherein a collective depth of each of the first and
the second graphical data is determined by calculating
an average depth of each of a plurality of non-occluded
coverage points within their respective coverage areas.

10

15

20
8. The system of claim 7 wherein first graphical data of the

first object comprises two or more objects, each having asso
ciated graphical data.

9. The system of claim 7 wherein second graphical data of
the second object comprises two or more objects, each having
associated graphical data.

10. The system of claim 7 wherein a pixel shader executes
upon a determination that graphical data is to be stored.

11. The system of claim 7 further comprising comparing
the first and second objects based on stencil information, or
alpha-to-coverage or translucency or any combination
thereof.

12. The system of claim 7, wherein information associated
with non-discarded graphical data is provided to a resolve
process for obtaining data for display, and wherein data in
neighboring pixels is provided to the resolve process when
there are coverage points in the pixel area that do not have
graphical data associated with them.

k k k k k

