
USOO7884823B2

(12) United States Patent
Bertolami et al.

US 7,884,823 B2
Feb. 8, 2011

(10) Patent No.:
(45) Date of Patent:

(54) THREE DIMENSIONAL RENDERING OF 2003/0216175 A1* 11/2003 Osako et al. 463,31
DISPLAY INFORMATION USINGVIEWER 2005/00994.14 A1* 5/2005 Kaye et al. 345,419
EYE COORONATES 2005/0243085 A1 11/2005 Schechter et al. 345,419

2006, OO 12675 A1 1/2006 Alpaslan et al. 34.8/51
(75) Inventors: Joe Bertolami, Redmond, WA (US); 2007,0008313 A1 1/2007 Song et al. 345/419

Robert M. Craig, Bellevue, WA (US); FOREIGN PATENT DOCUMENTS
Dax Hawkins, Kirkland, WA (US): Sing
Bing Kang, Redmond, WA (US); WO WO 2006/07100.6 A1 T 2006
Jonathan E. Lange, Bellevue, WA (US) OTHER PUBLICATIONS

(73) Assignee: Microsoft Corporation, Redmond, WA Fehn, C. et al., “An Evolutionary and Optimised Approach on 3-D
(US) TV'. http://www.cs.unc.edu, 8 pages, 2002.

LaMothe, A., “3D Game Programming with a Virtual Computer'.
(*) Notice: Subject to any disclaimer, the term of this 2007 Pearson Education, http://www.samspublishing.com/articles, 7

patent is extended or adjusted under 35 pages. s ImageDIG/2D/3D Digitizing Software', pp. 2002-2005 (C), http://
U.S.C. 154(b) by 884 days. imagedig.com, 2 pages.

“Virtual FX 3D Converter, VFX 2D to 3D Converter: Watch Movies
(21) Appl. No.: 11/761,604 or TV in Real 3D, 2002-2007 C), http://www.i-glassesstore.com/

converter.html, 3 pages.
(22) Filed: Jun. 12, 2007

* cited by examiner
65 Prior Publication Dat (65) O DO Primary Examiner Daniel F Hajnik

US 2008/030966O A1 Dec. 18, 2008 (74) Attorney, Agent, or Firm Woodcock Washburn LLP

(51) Int. Cl. (57) ABSTRACT
G06T I5/20 (2006.01)
G06T IS/00 (2006.01) Game data is rendered in three dimensions in the GPU of a

52) U.S. Cl. 345/427; 345/419 ame COinSOle. A left Camera V1eW and a r1ght Camera V1eWare (52) s 9. le. A lef da righ
(58) Field of Classification Search None generated from a single camera view. The left and right cam

See application file for complete search history. era positions are derived as an offset from a default camera.
The focal distance of the left and right cameras is infinity. A

(56) References Cited game developer does not have to encode dual images into a
specific hardware format. When a viewer sees the two slightly

U.S. PATENT DOCUMENTS offset images, the user's brain combines the two offset images
5,717.415 A 2, 1998 Iue et al. 345.8 into a single 3D image to give the illusion that objects either
6,295,070 B1 9/2001 Wood 345,430 pop out from or recede into the display screen. In another
6,384,859 B1 5/2002 Matsumoto et al. 34843 embodiment, individual, private video is rendered, on a single
6,434.278 B1 8/2002 Hashimoto 382.285 display screen, for different viewers. Rather than rendering
6,496,598 B1 12/2002 Harman 382,154 two similar offset images, two completely different images
6,924,833 B1* 8/2005 McDowall et al. 348/42 s
7,116,335 B2 10/2006 Pearce et al. 1587 are rendered allowing each player to view only one of the
7,382.374 B2 * 6/2008 Majer et al. 345/473 1mages.
7,666,096 B2 * 2/2010 Novelo 463,30

2003/0146973 A1 8/2003 Swift et al. 34.8/51 20 Claims, 6 Drawing Sheets

Receive indication To Render in 3D 39
(Call Render API)

40
Receive Single Perspective Viewpoint
Information (Location) And Content

(2D)
42

Generate First And Second Offset Perspectives
44

Generate Composite Content Utilizing Two Views |-

Transform Composite Content into 3D Content
- Configure Parallel Camera Views - Focal Plane Atlnfinity
- Map Real World Coordinate To Virtual Game Coordinates

46

50
Provide Transformed Composite For 3D Display l?

US 7,884,823 B2 U.S. Patent

U.S. Patent Feb. 8, 2011 Sheet 2 of 6 US 7,884,823 B2

:

US 7,884,823 B2 Sheet 3 of 6 Feb. 8, 2011 U.S. Patent

<!--~~~~~~~~~~~~~ ºue?d ?eoog

US 7,884,823 B2 Sheet 4 of 6 Feb. 8, 2011 U.S. Patent

*--------~--~ eoedS eleuueO

?OedS p?IONA

US 7,884,823 B2
1.

THREE DIMIENSIONAL RENDERING OF
DISPLAY INFORMATION USINGVIEWER

EYE COORONATES

TECHNICAL FIELD

The technical field relates generally to computer process
ing and more specifically to rendering display information in
three dimensions.

BACKGROUND

Often touted as the holy-grail of gaming, three dimensional
(3D) gaming has not yet reached the commercial Success
desired by many game developers and Suppliers. There are
several problems associated with 3D gaming. 3D displays for
the home market are not readily available. Typical displays
are single-purpose, in that a display is configured either for
two-dimensional (2D) rendering or 3D rendering, but not
both. Displays configured to render in both 2D and 3D are
typically prohibitively expensive. Further, very little3D game
content exists. Content producers typically do not want to
investin a new technology until the technology is proven and
consumers typically do not want to invest in the technology if
there is limited content available. Additionally, true 3D con
tent requires multiple cameras to film objects from different
viewpoints.

SUMMARY

This Summary is provided to introduce a selection of con
cepts in a simplified form that are further described below in
the Detailed Description Of Illustrative Embodiments. This
Summary is not intended to identify key features or essential
features of the claimed subject matter, nor is it intended to be
used to limit the scope of the claimed subject matter.

Three-dimensional (3D) content for video games and
related applications is rendered on a console utilizing existing
hardware technology. No new display technology need be
developed. Software/game developers can incorporate 3D
capability into their video games with minimal work. 3D
capabilities also are utilized to provide private multiple views
wherein one viewer can not see another viewer's content.

In an example configuration, video games are rendered
using multiple camera views. The multiple views are gener
ated within the rendering engine. Thus, Software/game devel
opers are not required to encode dual images into a specific
hardware format. Content from a single (default) camera
perspective is provided to the engine and first and second
camera viewpoints are generated therefrom. The first and
second camera viewpoints are slightly offset from the default
camera viewpoint. When a viewer sees the two slightly offset
images, the user's brain combines the two offset images into
a single 3D image to give the illusion that objects either pop
out from or recede into the display Screen. In an example
embodiment, two camera views, a right camera view and a
left camera view, are generated from a default camera view.
The left camera view is generated by subtracting an offset
from the default camera view and the right camera view is
generated by adding an offset to the default camera view. The
camera view perceived by a viewer is between the left and
right camera views.

In another example configuration, individual, private video
is rendered, on a single display screen, for different viewers.
Rather than rendering two similar offset images for a single
3D image, two completely different images are rendered
allowing each player to view only one of two 2D (two dimen

10

15

25

30

35

40

45

50

55

60

65

2
sional) images. Thus, viewers can view a full screen display
rather than a split screen display. This technique can be
expanded to accommodate any number of viewers. Utilizing
this technique, multiple players can view various aspects of a
common game and/or completely different games. In various
implementations, the individual video is temporally multi
plexed, spatially multiplexed, or a combination thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing Summary, as well as the following detailed
description, is better understood when read in conjunction
with the appended drawings. For the purpose of illustrating
rendering display information in three dimensions, there is
shown in the drawings exemplary constructions thereof, how
ever, rendering display information in three dimensions is not
limited to the specific methods and instrumentalities dis
closed.

FIG. 1 is a diagram depicting an example top-down view of
a classically rendered Stereo scene.

FIG. 2 illustrates a stereo image rendered from the two
CaCaS.

FIG.3 is a diagram depicting an example top-down view of
a rendered stereo scene wherein the cameras are in a parallel
configuration.

FIG. 4 is a functional block diagram of an example vertex
transformation processing pipeline.

FIG. 5 is a flow diagram of an example process for render
ing information in 3D.

FIG. 6 is a depiction of a suitable computing environment
in which rendering display information in three dimensions
can be implemented.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

In an example embodiment, three-dimensional (3D) ren
dering of content, such as video game content, is performed
by a graphics processing unit (GPU) rather than a central
processing unit (CPU). This allows a software/game devel
oper to easily generate software that can be rendered in 3D. In
the case of game applications, the 3D rendering is performed
on the game console. Such as for example, an XBOXOR game
console. The Software/game developer is not required togen
erate software specifically designed for 3D rendering. The
developer can generate Software that calls an API (application
programming interface) that performs the transformation into
3D renderable display information, thus enabling a stereo
scopic renderstate. The Software/game developer is insulated
from the task of rendering two separate views, encoding dual
images into a specific hardware format, and rendering this
view to the display's encoding format. The Software/game is
insulated from the addition of the second camera, the calibra
tion of that camera, the generation of two scenes, and the
encoding format for the display. However, the Software/game
developer is provided control over which scenes are rendered
in 3D and which are not. Thus, the software/game developer
can turn on a 3D mode state, of the like, providing an indica
tion that content is to be rendered in 3D on a frame by frame
basis.

In example embodiments, utilization of the 3D rendering
technique described herein can provide rendering of an entire
game, or application, in 3D or rendering of selected portions
of a game, or application, in 3D. Further, utilization of the
herein described 3D rendering technique allows multiple
viewers to view different rendered display information,
wherein one viewer can not view another viewer’s display

US 7,884,823 B2
3

information. The 3D rendering technique can be utilized with
any appropriate display device, such as a monitor, a televi
Sion, or the like. In an example embodiment, the 3D rendering
technique is utilized with goggles, or the like, to provide
temporal multiplexing.

Three dimensional (3D) displays incorporate two images,
a left image and a right image corresponding to each eye of a
viewer. A game, also referred to as a title, produces a single
image comprising the two separate images. To generate a 3D
image, a scene from the two cameras, left (L), and right (R) is
rendered. In an example embodiment, the 3D rendering is
performed by the GPU of a processor, such as an XBOXOR)
game console for example. Thus, the CPU of the processor
does not have to recalculate, for each rendered pass, game
play, audio, physics, etc. The L and R camera positions are
derived as an offset from a default camera. The camera posi
tions and angles are adjustable to achieve a desired 3D effect.
Once the two scenes are rendered and captured, they are
processed by the GPU for a final render pass. This pass is
processed at a chosen resolution and does the encoding of the
textures to the desired encoding format of the display.

FIG. 1 is a diagram depicting an example top-down view of
a classically rendered Stereo scene comprising object 12,
point 1, and point 2. The Surface in space where both cameras
14, 16 are focused is called the horopter. The horopter is a
curved Surface. In an example configuration, the horopter of
cameras 14 and 16 is approximated with the approximate
focal convergence depth plane 22. The approximate focal
convergence depth plane 22 is the approximate depth value at
objects transition to/from negative and positive parallax. The
approximate focal convergence depth plane 22 is an approxi
mation because the focal planes of each camera are slightly
different. The plane of each camera is perpendicular to a
respective camera view direction, thus the two focal planes
cross in a semi-X fashion, on the focal convergence point,
which rests on the focal convergence depth plane. Lines 18
and 20 outline the shape of the camera frustums for cameras
14 and 16, respectively. The lines within each outlined frus
tum represent possible lines of sight for each camera 14, 16.
The cameras 14, 16, are slightly skewed with their centers of
focus occupying the same coordinate on the focal plane 22.
The overlapping nature of the camera frustums is an addi
tional indication of their skewed nature.

Point 1 is located behind the focal plane 22 (farther from
the cameras 14, 16) while point 2 is located in front of the
focal plane 22 (closer to the cameras 14, 16). If the focal plane
22 is mapped directly to the display of a processor or the like,
as is customary in most implementations, objects in front of
the focal plane 22 are in negative parallax space and will
appear to pop out of the display. Likewise, objects behind the
focal plane 22 are in positive parallax space and will appear
behind the display. Objects that are coincident with the focal
plane 22 are said to have Zero parallax and appear to coincide
with the display.

The parallax space of a camera dictates its relative repre
sentation in camera space. For example, objects in positive
parallax space will have a lower screen space X coordinate
value when viewed by the left camera and a higher X coordi
nate when viewed by the right camera. Objects that have Zero
parallax will occupy the same screen space coordinates for
both cameras. This effect does not produce geometrically
accurate results. As a consequence of the varying viewpoints,
objects appear spatially shifted between any pair of stereo
images. As shown in FIG. 2, which illustrates a stereo image
rendered from the two cameras 14 and 16, the object 12 is
shifted to the right in the left camera image, and to the left in
the right camera image. If the two images depicted in FIG. 2

10

15

25

30

35

40

45

50

55

60

65

4
were Superimposed on top of one another, they would pro
duce a 3D effect in negative parallax space. This means that
the donut would appear to pop out of the screen at viewers.
One of the problems with this model of stereoscopic cali

bration is that objects only appear clearly visible if they are
close to the focal plane and thus demonstrate unexaggerated
levels of stereoscopic separation. The skewing of cameras
enforces a focal range upon viewers, and makes it difficult to
focus on (increasingly hyper-stereo) objects that fall outside
of this range. Thus very close or very distant objects become
a great deal harder to view.

Another shortcoming of the classic approach depicted in
FIG. 1 is that it focuses on being geometrically accurate,
without being physically accurate. That is, the approach does
not correlate the configuration of the virtual cameras to the
real world. The 3D rendering approachin accordance with the
present invention, on the other hand, attempts to accurately
map the separation of a viewer's eyes, in the real world, to the
separation of the virtual cameras in the game world. By
removing inconsistencies in the viewing configuration of the
cameras, the viewer is guaranteed to receive stereo images
that are physically accurate that place no greater strain on the
eyes than viewing 3D objects in the real world.

FIG.3 is a diagram depicting an example top-down view of
a rendered stereo scene comprising object 12, point 1, and
point 2, wherein the cameras 14 and 16 are in a parallel
configuration. Lines 24 and 26 outline the shape of the camera
frustums for parallel configured cameras 14 and 16, respec
tively. The lines within each outlined frustum represent pos
sible lines of sight for each camera14, 16. A para-perspective
model is utilized for cameras 14, 16. A projection flat plane
(e.g., near clipping plane, or the screen/display) is defined,
Such that everything past the flat plane (e.g., through the
screen) is orthographically projected onto the flat plane, and
the image on the flat plane is Subsequently viewed perspec
tive.

In gaming scenarios, enforcing a specific (finite) focal
plane distance is unacceptable because a viewer becomes
constrained and unable to choose where she wants to focus at
all times. Objects in the scene that are closer to the focal plane
will always appear more crisp, more in focus, and easier to
view than objects farther away. In accordance with the 3D
rendering technique of the present invention, a parallel cam
era configuration is utilized, wherein, as depicted in FIG. 3,
the cameras converge at infinity. This forces the entire game
world to constantly be in focus, and mitigates fatigue of a
viewer's eye. Thus, the primary focal plane is located at a
distance of infinity and all rendered objects exist in the nega
tive parallax space. Accordingly, a viewer can focus on any
object in the world, effectively allowing her to determine, at
will, where to place the focal plane. Thus the positive and
negative parallax spaces are constantly changing as the user
focuses at variable distances into the virtual world, which
mimics real world ocular operation and Stereopsis. For
example, a way to conceptualize this mechanism is for one to
hold up a finger a few inches in front of one's nose, with a
specific object of interest (for example a chair) along the same
line of sight as the finger, but further away. When one focuses
on the finger and closes the left eye, one notices that the object
of interest in the background, as viewed from the open (right)
eye, is shifted to the right. That is, the right eye “sees” the
object of interest in positive parallax because the focal plane
is at the finger. Next, one can re-focus now on the object of
interest and again close the left eye. One will observe that the
right eye perceives the finger in negative parallax, and that the
right eye correctly sees the finger as shifted to the left.

US 7,884,823 B2
5

To achieve 3D rendering in accordance with the present
invention, a mapping is created of real world coordinates to
virtual game coordinates. Although this description is in the
context of a game, it is to be understood that 3D rendering as
described herein is applicable to any appropriate application.
The mapping of real world coordinates to virtual game coor
dinates allows the determination of the relative distance
between virtual cameras based on the average distance
between a person’s eyes. Eye coordinates are mapped directly
into screen space, and ultimately into the game's world space
coordinate system, and refined to take the viewer's distance
from the display Screen into account. This mapping is
described with reference to a vertex transformation process
ing pipeline.

FIG. 4 is a functional block diagram of an example vertex
transformation processing pipeline 38 comprising a world
matrix transformation block 28, a view matrix transformation
block 30, a projection matrix transformation block 32, a per
spective divide block 34, and a viewport matrix transforma
tion block36. Functions of the vertex transformation pipeline
38 will be described and then the vertex transformation pipe
line 38 will be traversed in reverse order to describe how real
world coordinates are mapped to virtual game coordinates in
accordance with an embodiment of the present invention.
The ultimate goal is to transform what is seen by a virtual

3D camera, into a 2D representation with apparent depth.
Vertices begin in object space, which is centered about the
origin, as modeled in an art tool, or the like. Upon transfor
mation by the world matrix block 28, the vertices now exist in
the world coordinate system of a game (or any appropriate
application). The world matrix transformation allows a single
model to be created relative to the origin, but placed at several
different locations throughout the game world. Next, vertices
are transformed by the view matrix block 30, which orients
the vertices about a particular location and direction in 3D
space corresponding to an in-game camera. As a result, all
vertices are transformed such that they are visible to a camera
seated at the origin, looking down the (negative or positive)
Z-axis. This space is referred to as the view (or camera) space,
because it orients the world relative to an arbitrary camera
orientation.
The projection matrix block 32 transforms vertices from

camera space into projection space. Projection space is
defined as a coordinate system spanning from -w to +w in the
X and y directions, and either 0 to +w or 0 to -w in the z
direction. Conceptually this matrix transforms a viewing
frustum from camera space into an unnormalized coordinate
system such that the near viewing plane maps to the front face
of the projection space, and the far viewing plane maps to the
back face of the projection space.

The perspective divide block 34 performs a division opera
tion. When vertices of the form x, y, Z, 1 are multiplied by
the projection matrix transform block 32, they are trans
formed into the form of x', y', z, w, and are not normalized.
In order to normalize these coordinates (and produce a sense
of geometric depth), all coordinates are divided by w. This
operation yields a coordinate of the form x/w, y'/w, Z/w, 1.
At this point, the vertices are in normalized device space
which spans from -1 to +1 in the X and y directions, and 0 to
+1 or 0 to -1 in the Z direction. Vertices can now be clipped
because the coordinate system is normalized, and a perspec
tive sense has been added by effectively shrinking objects as
they approach the far viewing plane. The final step in the
pipeline vertex transformation processing pipeline 38 is per
formed by the viewport matrix transformation block 36. A
goal of the viewport matrix transformation block 36 is to take
vertices bounded by a unit hemi-cube (-1 to 1 in Xy, 0 to +-1

10

15

25

30

35

40

45

50

55

60

65

6
in Z) and map them into a screen based coordinate system (or
a user defined system). This implies that vertex coordinates
will range from 0 to width, and 0 to height in the xy, and from
0 to 1 in the Z (for depth operations).
As mentioned above, in accordance with an example

embodiment of the present invention, eye coordinates are
mapped directly into screen space, and ultimately into the
game's world space coordinate system, and refined to take the
viewer's distance from the display screen into account. This
mapping allows the determination of the relative distance
between virtual cameras based on the average distance
between a person’s eyes. Eye coordinates are mapped directly
into screen space, and Subsequently into the game's world
space coordinate system, and refined to take into account the
viewer's distance from the display screen.

In an example scenario, assume a total eye separation of 3
inches, wherein the left and right eyes are each 1.5 inches
away from the center of the nose. This individual eye-to-nose
distance is referred to as the eye separation distance. If we
attempt to map this value directly to the display without
taking viewing distance into consideration, a separation of 1.5
inches for eacheye maps directly to a span of 1.5 inches on the
surface of the display. Next this distance is mapped into the
normalized device space of the vertex transformation pro
cessing pipeline 38 by dividing the separation distance by /2
the width of the display. Because normalized device space
ranges from -1 to 1 in the X range, the normalized device
separation is equal to the eye separation divided by half the
display width. At this point the eye-to-nose real world dis
tance is mapped into the virtual normalized device space. The
viewport transformation block 36 is skipped because of the
assumption of a standard full-screen viewport transforma
tion.

Following the vertex transformation processing pipeline
38 backwards, this distance is transformed inversely through
the perspective divide block 34 and the projection matrix
transform block 32. Performing an inverse transformation,
results in an offset of 0.014125 applied to the cameras in view
space to achieve a physically correct calibration offset
derived from the separation between the viewer’s eyes. Now
that the correct amount of offset to apply to the Stereo cameras
has been determined, each camera is translated by this
amount. Because the coordinates are view space coordinates,
the offset is applied as a lateral shift along the x axis in both
the positive and negative directions.

Because the virtual cameras are parallel and their separa
tion is physically based there is no need to dynamically shift
the separation or perform any stereo calculations per frame.
In this configuration, the game is rendering world geometry
as accurately as possible with reverence to the physical
dimension and unit System. As a natural consequence, this
method frees the viewer from fatigue as the eye is no longer
taxed or constrained to view an artificially and arbitrarily
Stereographic image.

FIG. 5 is a flow diagram of an example process for render
ing information in 3D. In an example embodiment, two cam
era viewpoints (e.g., left and right) are generated from a
default camera viewpoint. Thus default camera viewpoint is
in the middle of the left and right camera viewpoints. During
execution of the game, an indication to render content in 3D
is received at Step 39. The indication can comprise any appro
priate indication, Such as, for example, a call to an API for
rendering content in 3D.
At step 40, a single (default) camera viewpoint and asso

ciated content are received. That is, the location of the single
perspective camera viewpoint and the content associated with
the single perspective camera viewpoint are received. First

US 7,884,823 B2
7

and second perspectives are generated at step 42. The first and
second perspectives are offset from the received (default)
view, as described above. In an example embodiment, the first
and second perspectives represent left and right perspectives.
The first and second perspectives (camera viewpoints) are
slightly offset from the default camera viewpoint. The left
camera viewpoint is generated by Subtracting an offset from
the default camera viewpoint and the right camera viewpoint
is generated by adding an offset to the default camera view
point. Composite content is generated at step 44. The com
posite content comprises the two offset views. The composite
content is transformed into content renderable in 3D at step
46. The transform, as described above, includes configuring
the virtual cameras to comprise parallel views such that the
effective focal length is infinity, and includes mapping the
real world coordinates, such as the viewer's eye separation, to
game world coordinates. The transformed composite content
is provided for rendering in 3D at step 50.

In an example embodiment, instead of using the left and
right images to produce one 3D image, the herein described
3D rendering technique also can be used to provide two
unique 2D images to two people playing a game on the same
screen. The display data can alternate between the left and
right eyes. As an analogy, consider shutter glasses, although
the same theory applies to displays that do not require glasses.
The displaying of information is synchronized with the dis
play Such that a shutter for the left eye is open when the image
for the left eye is on the display screen and the shutter for the
right eye is open when the image for the right eye is displayed
on the screen. If the images for the left and right eye are shown
in rapid succession, one gets the illusion of seeing one 3D
image because the brain will persist the preceding image and
blend the two. Furthermore, the left eye never sees data
intended for the right eye and vice versa because when the
shutter for the left eye is open, the shutter for the right eye is
closed. It is to be understood that the use of goggles is as an
example application, and should not be limited thereto. This
technique is applicable to a system that does not require
goggles.

Without the goggles, a player would see both views simul
taneously and could possibly see what the other player is
doing. To avoid seeing the other players display data (e.g., in
a game like poker), a third view is added. By adding a third
view it can be ensured that a player without goggles would
only see garbage. Every third frame, for example, could be
garbage' such that someone without glasses would see player
1's (P1) image, player 2's (P2) image, and then the garbage
image in rapid succession. If the images are shown fast
enough, the output would be so garbled as to make Screen
cheating difficult. In order to “decode' the correct image for
P1 and P2, the glasses would then have to shutterina different
pattern. P1’s shutter pattern would be open, closed, closed,
and P2’s pattern would be closed, open, closed. In multi
player scenarios, two distinct views enable two people logged
in to the console to see separate dashboard settings. For
example, player 1 might have a “Kameo' theme and back
ground while player 2 has a "Gears of War theme. Both
players can see their own custom settings.

In an example embodiment, a synchronizing module, or
the like, could be synchronized to the vertical blank interrupt
in the console. The synchronizing module could drive the
synchronization of goggles. The monitor, TV, or the like,
would receive un-encoded images in sequence: left image,
right image, left image, right image, etc. and the synchroni
Zation module would ensure that the glasses would shutter
accordingly.

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 6 and the following discussion provide a brief general

description of a Suitable computing environment in which
rendering display information in three dimensions can be
implemented. Although not required, various aspects of ren
dering display information in three dimensions can be
described in the general context of computer executable
instructions, such as program modules, being executed by a
computer, such as a client workstation or a server. Generally,
program modules include routines, programs, objects, com
ponents, data structures and the like that perform particular
tasks or implement particular abstract data types. Moreover,
implementation of rendering display information in three
dimensions can be practiced with other computer system
configurations, including hand held devices, multi processor
systems, microprocessor based or programmable consumer
electronics, network PCs, minicomputers, mainframe com
puters, and the like. Further, rendering display information in
three dimensions also can be practiced in distributed comput
ing environments where tasks are performed by remote pro
cessing devices that are linked through a communications
network. In a distributed computing environment, program
modules can be located in both local and remote memory
storage devices.
A computer system can be roughly divided into three com

ponent groups: the hardware component, the hardware/soft
ware interface system component, and the applications pro
grams component (also referred to as the “user component'
or “software component'). In various embodiments of a com
puter system the hardware component may comprise the cen
tral processing unit (CPU) 621, the memory (both ROM 664
and RAM 625), the basic input/output system (BIOS) 666,
and various input/output (I/O) devices such as a keyboard
640, a mouse 662, a monitor 647, and/or a printer (not
shown), among other things. The hardware component com
prises the basic physical infrastructure for the computer sys
tem.
The applications programs component comprises various

Software programs including but not limited to compilers,
database systems, word processors, business programs,
Videogames, and so forth. Application programs provide the
means by which computer resources are utilized to Solve
problems, provide Solutions, and process data for various
users (machines, other computer systems, and/or end-users).
In an example embodiment, application programs perform
the functions associated with rendering display information
in three dimensions as described above.
The hardware/software interface system component com

prises (and, in Some embodiments, may solely consist of) an
operating system that itself comprises, in most cases, a shell
and a kernel. An "operating system” (OS) is a special program
that acts as an intermediary between application programs
and computer hardware. The hardware/software interface
system component may also comprise a virtual machine man
ager (VMM), a Common Language Runtime (CLR) or its
functional equivalent, a Java Virtual Machine (JVM) or its
functional equivalent, or other Such software components in
the place of or in addition to the operating system in a com
puter system. A purpose of a hardware/software interface
system is to provide an environment in which a user can
execute application programs.
The hardware/software interface system is generally

loaded into a computer system at startup and thereafter man
ages all of the application programs in the computer system.
The application programs interact with the hardware/soft
ware interface system by requesting services via an applica
tion program interface (API). Some application programs
enable end-users to interact with the hardware/software inter

US 7,884,823 B2
9

face system via a user interface such as a command language
or a graphical user interface (GUI).
A hardware/software interface system traditionally per

forms a variety of services for applications. In a multitasking
hardware/software interface system where multiple programs
may be running at the same time, the hardware/software
interface system determines which applications should run in
what order and how much time should be allowed for each
application before Switching to another application for a turn.
The hardware/software interface system also manages the
sharing of internal memory among multiple applications, and
handles input and output to and from attached hardware
devices such as hard disks, printers, and dial-up ports. The
hardware/software interface system also sends messages to
each application (and, in certain cases, to the end-user)
regarding the status of operations and any errors that may
have occurred. The hardware/software interface system can
also offload the management of batch jobs (e.g., printing) so
that the initiating application is freed from this work and can
resume other processing and/or operations. On computers
that can provide parallel processing, a hardware/software
interface system also manages dividing a program so that it
runs on more than one processor at a time.
A hardware/software interface system shell (referred to as

a “shell’) is an interactive end-user interface to a hardware/
software interface system. (A shell may also be referred to as
a “command interpreter” or, in an operating system, as an
“operating system shell’). A shell is the outer layer of a
hardware/software interface system that is directly accessible
by application programs and/or end-users. In contrast to a
shell, a kernel is a hardware/software interface systems
innermost layer that interacts directly with the hardware com
ponents.
As shown in FIG. 6, an exemplary general purpose com

puting system includes a conventional computing device 660
or the like, including a processing unit 621, a system memory
662, and a system bus 623 that couples various system com
ponents including the system memory to the processing unit
621. The system bus 623 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read only
memory (ROM) 664 and random access memory (RAM)
625. A basic input/output system 666 (BIOS), containing
basic routines that help to transfer information between ele
ments within the computing device 660. Such as during start
up, is stored in ROM 664. The computing device 660 may
further include a hard disk drive 627 for reading from and
writing to a hard disk (hard disk not shown), a magnetic disk
drive 628 (e.g., floppy drive) for reading from or writing to a
removable magnetic disk 629 (e.g., floppy disk, removal Stor
age), and an optical disk drive 630 for reading from or writing
to a removable optical disk 631 such as a CD ROM or other
optical media. The hard disk drive 627, magnetic disk drive
628, and optical disk drive 630 are connected to the system
bus 623 by a hard disk drive interface 632, a magnetic disk
drive interface 633, and an optical drive interface 634, respec
tively. The drives and their associated computer readable
media provide non volatile storage of computer readable
instructions, data structures, program modules and other data
for the computing device 660. Although the exemplary envi
ronment described herein employs a hard disk, a removable
magnetic disk 629, and a removable optical disk 631, it
should be appreciated by those skilled in the art that other
types of computer readable media which can store data that is
accessible by a computer. Such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges, ran

10

15

25

30

35

40

45

50

55

60

65

10
dom access memories (RAMs), read only memories (ROMs),
and the like may also be used in the exemplary operating
environment. Likewise, the exemplary environment may also
include many types of monitoring devices such as heat sen
sors and security or fire alarm systems, and other sources of
information.
A number of program modules can be stored on the hard

disk, magnetic disk 629, optical disk 631, ROM 664, or RAM
625, including an operating system 635, one or more appli
cation programs 636, other program modules 637, and pro
gram data 638. A user may enter commands and information
into the computing device 660 through input devices Such as
a keyboard 640 and pointing device 662 (e.g., mouse). Other
input devices (not shown) may include a microphone, joy
Stick, game pad, satellite disk, Scanner, or the like. These and
other input devices are often connected to the processing unit
621 through a serial port interface 646 that is coupled to the
system bus, but may be connected by other interfaces, such as
a parallel port, game port, or universal serial bus (USB). A
monitor 647 or other type of display device is also connected
to the system bus 623 via an interface, such as a video adapter
648. In addition to the monitor 647, computing devices typi
cally include other peripheral output devices (not shown),
Such as speakers and printers. The exemplary environment of
FIG. 6 also includes a host adapter 655, Small Computer
System Interface (SCSI) bus 656, and an external storage
device 662 connected to the SCSI bus 656.
The computing device 660 may operate in a networked

environment using logical connections to one or more remote
computers, such as a remote computer 649. The remote com
puter 649 may be another computing device (e.g., personal
computer), a server, a router, a network PC, a peer device, or
other common network node, and typically includes many or
all of the elements described above relative to the computing
device 660, although only a memory storage device 650
(floppy drive) has been illustrated in FIG. 6. The logical
connections depicted in FIG. 6 include a local area network
(LAN) 651 and a wide area network (WAN) 652. Such net
working environments are commonplace in offices, enter
prise wide computer networks, intranets and the Internet.
When used in a LAN networking environment, the com

puting device 660 is connected to the LAN 651 through a
network interface or adapter 653. When used in a WAN net
working environment, the computing device 660 can include
a modem 654 or other means for establishing communica
tions over the wide area network 652, such as the Internet. The
modem 654, which may be internal or external, is connected
to the system bus 623 via the serial port interface 646. In a
networked environment, program modules depicted relative
to the computing device 660, or portions thereof, may be
stored in the remote memory storage device. It will be appre
ciated that the network connections shown are exemplary and
other means of establishing a communications link between
the computers may be used.

While it is envisioned that numerous embodiments of ren
dering display information in three dimensions are particu
larly well-suited for computerized systems, nothing in this
document is intended to limit the invention to such embodi
ments. On the contrary, as used herein the term “computer
system’ is intended to encompass any and all devices capable
of storing and processing information and/or capable of using
the stored information to control the behavior or execution of
the device itself, regardless of whether such devices are elec
tronic, mechanical, logical, or virtual in nature.
The various techniques described herein can be imple

mented in connection with hardware or software or, where
appropriate, with a combination of both. Thus, the methods

US 7,884,823 B2
11

and apparatuses for rendering display information in three
dimensions, or certain aspects or portions thereof, can take
the form of program code (i.e., instructions) embodied in
tangible media, such as floppy diskettes, CD-ROMs, hard
drives, or any other machine-readable storage medium,
wherein, when the program code is loaded into and executed
by a machine. Such as a computer, the machine becomes an
apparatus for implementing rendering display information in
three dimensions.

The program(s) can be implemented in assembly or
machine language, if desired. In any case, the language can be
a compiled or interpreted language, and combined with hard
ware implementations. The methods and apparatuses for ren
dering display information in three dimensions also can be
practiced via communications embodied in the form of pro
gram code that is transmitted over some transmission
medium, Such as over electrical wiring or cabling, through
fiber optics, or via any other form of transmission, wherein,
when the program code is received and loaded into and
executed by a machine, Such as an EPROM, a gate array, a
programmable logic device (PLD), a client computer, or the
like. When implemented on a general-purpose processor, the
program code combines with the processor to provide a
unique apparatus that operates to invoke the functionality of
rendering display information in three dimensions. Addition
ally, any storage techniques used in connection with render
ing display information in three dimensions can invariably be
a combination of hardware and Software.

While rendering display information in three dimensions
has been described in connection with the example embodi
ments of the various figures, it is to be understood that other
similar embodiments can be used or modifications and addi
tions can be made to the described embodiments for perform
ing the same functions of rendering display information in
three dimensions without deviating therefrom. Therefore,
rendering display information in three dimensions as
described herein should not be limited to any single embodi
ment, but rather should be construed in breadth and scope in
accordance with the appended claims.
What is claimed is:
1. A processor-implemented method for rendering infor

mation in three dimensions, the method comprising:
receiving, in the processor, default data indicative of an

image from a default virtual camera;
mapping coordinates of each of a first eye and a second eye

of a viewer to a world space coordinate system;
refining the mapped coordinates of the first eye and the

second eye in the world Space coordinate system to
account for a distance of the viewer from a display
device;

using the processor to generate first data indicative of a first
image from a first virtual camera located at the refined
mapped coordinates of the first eye;

using the processor to generate second data indicative of a
second image from a second virtual camera located at
the refined mapped coordinates of the second eye,
wherein:

a viewing angle associated with the first virtual camera is
offset, in accordance with a first offset, from a viewing
angle associated with the default virtual camera;

a viewing angle associated with the second virtual camera
is offset, in accordance with a second offset, from a
viewing angle associated with the default virtual cam
era;

a focal distance of the first virtual camera is infinity; and
a focal distance of the second virtual camera is infinity;

5

10

15

25

30

35

40

45

50

55

60

65

12
using the processor to generate a composite image com

prising the first image and the second image; and
using the processor to provide the composite image for

rendering using the display device, wherein the compos
ite image is perceivable in three dimensions.

2. A method in accordance with claim 1, wherein the first
image and the second image are indicative of a video game
image.

3. A method in accordance with claim 1, wherein the view
ing angle associated with the first virtual camera is parallel
with the viewing angle associated with the second virtual
CaCa.

4. A method in accordance with claim 1, further compris
ing mapping a real world coordinate to a game coordinate to
determine the first offset and the second offset.

5. A method in accordance with claim 4, wherein the real
world coordinate comprises at least one of

a distance between eyes of a viewer of the composite
image; and

a distance between a viewer of the composite image and a
display Surface on which the composite image is ren
dered.

6. A method in accordance with claim 1, wherein:
the first offset comprises an offset in a first direction from

the viewing angle of the default virtual camera;
the second offset comprises an offset in a second direction

from the viewing angle of the default virtual camera; and
the first direction is in an opposite direction from the sec

ond direction.
7. A method in accordance with claim 1, the information is

rendered in a graphics processing unit of the processor.
8. A method in accordance with claim 1, wherein the com

posite image comprises two separate two dimensional
images, the method further comprising toggling each of the
two separate images for allowing two viewers to view a
respective one of the two separate images.

9. A method in accordance with claim 1, wherein the infor
mation comprises video game information and a portion of
the video game information is rendered in three dimensions.

10. An apparatus comprising:
a memory configured to store processor-executable

instructions; and
a processor configured to receive the processor-executable

instructions from the memory and to execute the proces
Sor-executable instructions to:

map coordinates of each of a first eye and a second eye of
a viewer to a world space coordinate system;

refine the mapped coordinates to account for a distance of
the viewer from a display device;

generate, from default data indicative of a default image
from a default virtual camera:

first data indicative of a first image from a first virtual
camera having a location determined as a function of the
mapped coordinates of the first eye; and

second data indicative of a second image from a second
virtual camera have a location determined as a function
of the mapped coordinates of the second eye, wherein:

a viewing angle associated with the first virtual camera is
offset, in accordance with a first offset, from a viewing
angle associated with the default virtual camera;

a viewing angle associated with the second virtual camera
is offset, in accordance with a second offset, from a
viewing angle associated with the default virtual cam
era;

a focal distance of the first virtual camera is infinity; and
a focal distance of the second virtual camera is infinity,

US 7,884,823 B2
13

generate a composite image comprising the first image and
the second image; and render the composite image,
wherein the composite image is perceivable in three
dimensions.

11. An apparatus in accordance with claim 10, wherein the
first image and the second image are indicative of a video
game image.

12. An apparatus in accordance with claim 10, wherein the
viewing angle associated with the first virtual camera is par
allel with the viewing angle associated with the second virtual
CaCa.

13. An apparatus in accordance with claim 10, further
configured to map a real world coordinate to a game coordi
nate to determine the first offset and the second offset.

14. An apparatus in accordance with claim 13, wherein the
real world coordinate comprises at least one of

a distance between eyes of a viewer of the composite
image; and

a distance between a viewer of the composite image and a
display Surface on which the composite image is ren
dered.

15. An apparatus in accordance with claim 10, wherein the
composite image comprises two separate two dimensional
images, and wherein the processor is further configured to
toggle each of the two separate images for allowing two
viewers to view a respective one of the two separate images.

16. An apparatus in accordance with claim 10, wherein the
information comprises video game information and a portion
of the video game information is rendered in three dimen
sions.

17. A processor-readable storage medium, wherein the
Storage medium is not a signal, the storage medium storing
processor-executable instructions that, when executed by a
processor, cause the processor to perform the steps of:

mapping coordinates of each of a first eye and a second eye
of a viewer to a world space coordinate system;

10

15

25

30

35

14
refining the mapped coordinates to account for a distance

of the viewer from a display device:
generating, from default data indicative of a default image

from a default virtual camera:
first data indicative of a first image from a first virtual

camera having a location determined as a function of the
mapped coordinates of the first eye; and

second data indicative of a second image from a second
virtual camera have a location determined as a function
of the mapped coordinates of the second eye, wherein:

a viewing angle associated with the first virtual camera is
offset, in accordance with a first offset, from a viewing
angle associated with the default virtual camera;

a viewing angle associated with the second virtual camera
is offset, in accordance with a second offset, from a
viewing angle associated with the default virtual cam
era;

a focal distance of the first virtual camera is infinity; and
a focal distance of the second virtual camera is infinity;
generating a composite image comprising the first image

and the second image; and
rendering the composite image, wherein the composite

image is perceivable in three dimensions.
18. The processor-readable storage medium of claim 17,

wherein the information is indicative of video game informa
tion.

19. The processor-readable storage medium of claim 17,
wherein the viewing angle associated with the first virtual
camera is parallel with the viewing angle associated with the
second virtual camera.

20. The processor-readable storage medium of claim 17,
storing further processor-executable instructions for mapping
a real world coordinate to a game coordinate to determine the
first offset and the second offset.

